西门子语句表(STL)编程参考手册,了解西门子STL语言的最基本的知识
上传时间: 2017-12-07
上传用户:wangheping1234
photoshop软件(本例中使用CS5版本,当然各版本界面都大同小异) 界面篇 1 首先我们打开photoshop软件,界面就如下图所示了: 2 左侧的是工具箱调板,我们可以用鼠标单击相应的工具进行图片处理操作,鼠标右击可以进行某一工具选择(再使用熟练后,我们也可以按下相应的键盘键进行选择),如图: 3 右侧的是窗口调板,我们可以点击菜单中的窗口菜单,在下拉列表中选择我们需要的窗口调板,如图: 4 顶部的菜单栏中包含了全部photoshop常用的操作,我们不必去死记硬背,只要平时常用就会烂熟于心了。 5 在菜单栏的下方是属性栏,显示当前我们正在使用的工具的属性,如图: END 常用操作 1 打开一张图片,方法有三种:①使用菜单里面的打开命令;②使用快捷键Ctrl+O;③双击photoshop界面中心;④拖动想要处理的图片到photoshop中打开;⑤右键选择要处理的图片选择使用photoshop打开命令。 2 保存图片的方法:一般按下键盘上的快捷键Ctrl+S,或使用菜单保存命令(如果要另存的话就选择另存为选项;保存的图片可以选择任意格式,.psd是保存当前处理的所有步骤,下次打开还可以继续编辑,JPEG、png、gif格式就是处理好的图片格式) 3 历史记录面板的用法:我们处理图片的时候可能要反复修改获得最佳的效果,那么历史记录工具就可以很方便的返回之前我们的操作状态,如图,点击要恢复的步骤,即可恢复图片: END 使用技巧 如图所示黑色是前景色、白色是背景色,我们可以按下键盘上的X键进行前景色和背景色的互换: 图片移动操作,我们打开两张图片,想要移动其中的一张到另一张中,我们可以按住键盘的Ctrl键,使用鼠标拖动一张图片到另一张图片中,如图: 3 我们可以在处理图片的时候按下Z键使用放大镜放大图片的细节,处理图片的时候就会容易许多,我们可以按ATL键在放大和缩小之间切换! 4 我们可以按住键盘上的空格键,移动图片,对于处理大型的图片还是非常方便的! END 注意事项 photoshop入门相对来说比较简单,但熟练操作至少要3个月左右! 精通photoshop是一条非常漫长的路程,有时候会打退堂鼓,但只要多操作,多制作,慢慢的时间久了也就精了。
上传时间: 2017-12-07
上传用户:1506034115
photoshop软件(本例中使用CS5版本,当然各版本界面都大同小异) 界面篇 1 首先我们打开photoshop软件,界面就如下图所示了: 2 左侧的是工具箱调板,我们可以用鼠标单击相应的工具进行图片处理操作,鼠标右击可以进行某一工具选择(再使用熟练后,我们也可以按下相应的键盘键进行选择),如图: 3 右侧的是窗口调板,我们可以点击菜单中的窗口菜单,在下拉列表中选择我们需要的窗口调板,如图: 4 顶部的菜单栏中包含了全部photoshop常用的操作,我们不必去死记硬背,只要平时常用就会烂熟于心了。 5 在菜单栏的下方是属性栏,显示当前我们正在使用的工具的属性,如图: END 常用操作 1 打开一张图片,方法有三种:①使用菜单里面的打开命令;②使用快捷键Ctrl+O;③双击photoshop界面中心;④拖动想要处理的图片到photoshop中打开;⑤右键选择要处理的图片选择使用photoshop打开命令。 2 保存图片的方法:一般按下键盘上的快捷键Ctrl+S,或使用菜单保存命令(如果要另存的话就选择另存为选项;保存的图片可以选择任意格式,.psd是保存当前处理的所有步骤,下次打开还可以继续编辑,JPEG、png、gif格式就是处理好的图片格式) 3 历史记录面板的用法:我们处理图片的时候可能要反复修改获得最佳的效果,那么历史记录工具就可以很方便的返回之前我们的操作状态,如图,点击要恢复的步骤,即可恢复图片: END 使用技巧 如图所示黑色是前景色、白色是背景色,我们可以按下键盘上的X键进行前景色和背景色的互换: 图片移动操作,我们打开两张图片,想要移动其中的一张到另一张中,我们可以按住键盘的Ctrl键,使用鼠标拖动一张图片到另一张图片中,如图: 3 我们可以在处理图片的时候按下Z键使用放大镜放大图片的细节,处理图片的时候就会容易许多,我们可以按ATL键在放大和缩小之间切换! 4 我们可以按住键盘上的空格键,移动图片,对于处理大型的图片还是非常方便的! END 注意事项 photoshop入门相对来说比较简单,但熟练操作至少要3个月左右! 精通photoshop是一条非常漫长的路程,有时候会打退堂鼓,但只要多操作,多制作,慢慢的时间久了也就精了。
上传时间: 2017-12-07
上传用户:1506034115
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为,传统上采用动态规划来求解。设w是经营活动 i 所需要的资源消耗,M是所能提供的资源总量,p是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
上传时间: 2018-04-26
上传用户:jiazhe110125
#include <stdio.h> #include <stdlib.h> ///链式栈 typedef struct node { int data; struct node *next; }Node,*Linklist; Linklist Createlist() { Linklist p; Linklist h; int data1; scanf("%d",&data1); if(data1 != 0) { h = (Node *)malloc(sizeof(Node)); h->data = data1; h->next = NULL; } else if(data1 == 0) return NULL; scanf("%d",&data1); while(data1 != 0) { p = (Node *)malloc(sizeof(Node)); p -> data = data1; p -> next = h; h = p; scanf("%d",&data1); } return h; } void Outputlist(Node *head) { Linklist p; p = head; while(p != NULL ) { printf("%d ",p->data); p = p->next; } printf("\n"); } void Freelist(Node *head) { Node *p; Node *q = NULL; p = head; while(p != NULL) { q = p; p = p->next; free(q); } } int main() { Node *head; head = Createlist(); Outputlist(head); Freelist(head); return 0; } 2.顺序栈 [cpp] view plain copy #include <iostream> #include <stdio.h> #include <stdlib.h> ///顺序栈 #define MaxSize 100 using namespace std; typedef
上传时间: 2018-05-09
上传用户:123456..
#include <iostream> #include <stdio.head> #include <stdlib.head> #include <string.head> #define ElemType int #define max 100 using namespace std; typedef struct node1 { ElemType data; struct node1 *next; }Node1,*LinkList;//链栈 typedef struct { ElemType *base; int top; }SqStack;//顺序栈 typedef struct node2 { ElemType data; struct node2 *next; }Node2,*LinkQueue; typedef struct node22 { LinkQueue front; LinkQueue rear; }*LinkList;//链队列 typedef struct { ElemType *base; int front,rear; }SqQueue;//顺序队列 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 //1.采用链式存储实现栈的初始化、入栈、出栈操作。 LinkList CreateStack()//创建栈 { LinkList top; top=NULL; return top; } bool StackEmpty(LinkList s)//判断栈是否为空,0代表空 { if(s==NULL) return 0; else return 1; } LinkList Pushead(LinkList s,int x)//入栈 { LinkList q,top=s; q=(LinkList)malloc(sizeof(Node1)); q->data=x; q->next=top; top=q; return top; } LinkList Pop(LinkList s,int &e)//出栈 { if(!StackEmpty(s)) { printf("栈为空。"); } else { e=s->data; LinkList p=s; s=s->next; free(p); } return s; } void DisplayStack(LinkList s)//遍历输出栈中元素 { if(!StackEmpty(s)) printf("栈为空。"); else { wheadile(s!=NULL) { cout<<s->data<<" "; s=s->next; } cout<<endl; } } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 //2.采用顺序存储实现栈的初始化、入栈、出栈操作。 int StackEmpty(int t)//判断栈S是否为空 { SqStack.top=t; if (SqStack.top==0) return 0; else return 1; } int InitStack() { SqStack.top=0; return SqStack.top; } int pushead(int t,int e) { SqStack.top=t; SqStack.base[++SqStack.top]=e; return SqStack.top; } int pop(int t,int *e)//出栈 { SqStack.top=t; if(!StackEmpty(SqStack.top)) { printf("栈为空."); return SqStack.top; } *e=SqStack.base[s.top]; SqStack.top--; return SqStack.top; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 //3.采用链式存储实现队列的初始化、入队、出队操作。 LinkList InitQueue()//创建 { LinkList head; head->rear=(LinkQueue)malloc(sizeof(Node)); head->front=head->rear; head->front->next=NULL; return head; } void deleteEle(LinkList head,int &e)//出队 { LinkQueue p; p=head->front->next; e=p->data; head->front->next=p->next; if(head->rear==p) head->rear=head->front; free(p); } void EnQueue(LinkList head,int e)//入队 { LinkQueue p=(LinkQueue)malloc(sizeof(Node)); p->data=e; p->next=NULL; head->rear->next=p; head->rear=p; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //4.采用顺序存储实现循环队列的初始化、入队、出队操作。 bool InitQueue(SqQueue &head)//创建队列 { head.data=(int *)malloc(sizeof(int)); head.front=head.rear=0; return 1; } bool EnQueue(SqQueue &head,int e)//入队 { if((head.rear+1)%MAXQSIZE==head.front) { printf("队列已满\n"); return 0; } head.data[head.rear]=e; head.rear=(head.rear+1)%MAXQSIZE; return 1; } int QueueLengthead(SqQueue &head)//返回队列长度 { return (head.rear-head.front+MAXQSIZE)%MAXQSIZE; } bool deleteEle(SqQueue &head,int &e)//出队 { if(head.front==head.rear) { cout<<"队列为空!"<<endl; return 0; } e=head.data[head.front]; head.front=(head.front+1)%MAXQSIZE; return 1; } int gethead(SqQueue head)//得到队列头元素 { return head.data[head.front]; } int QueueEmpty(SqQueue head)//判断队列是否为空 { if (head.front==head.rear) return 1; else return 0; } void travelQueue(SqQueue head)//遍历输出 { wheadile(head.front!=head.rear) { printf("%d ",head.data[head.front]); head.front=(head.front+1)%MAXQSIZE; } cout<<endl; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 //5.在主函数中设计一个简单的菜单,分别测试上述算法。 int main() { LinkList top=CreateStack(); int x; wheadile(scanf("%d",&x)!=-1) { top=Pushead(top,x); } int e; wheadile(StackEmpty(top)) { top=Pop(top,e); printf("%d ",e); }//以上是链栈的测试 int top=InitStack(); int x; wheadile(cin>>x) top=pushead(top,x); int e; wheadile(StackEmpty(top)) { top=pop(top,&e); printf("%d ",e); }//以上是顺序栈的测试 LinkList Q; Q=InitQueue(); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q,x); } int e; wheadile(Q) { deleteEle(Q,e); printf("%d ",e); }//以上是链队列的测试 SqQueue Q1; InitQueue(Q1); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q1,x); } int e; wheadile(QueueEmpty(Q1)) { deleteEle(Q1,e); printf("%d ",e); } return 0; }
上传时间: 2018-05-09
上传用户:123456..
function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta) %[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta) %该函数用有限差分法求解有两种介质的正方形区域的二维拉普拉斯方程的数值解 %函数返回迭代因子、迭代次数以及迭代完成后所求区域内网格节点处的值 %a为正方形求解区域的边长 %r1,r2分别表示两种介质的电导率 %up,under分别为上下边界值 %num表示将区域每边的网格剖分个数 %deta为迭代过程中所允许的相对误差限 n=num+1; %每边节点数 U(n,n)=0; %节点处数值矩阵 N=0; %迭代次数初值 alpha=2/(1+sin(pi/num));%超松弛迭代因子 k=r1/r2; %两介质电导率之比 U(1,1:n)=up; %求解区域上边界第一类边界条件 U(n,1:n)=under; %求解区域下边界第一类边界条件 U(2:num,1)=0;U(2:num,n)=0; for i=2:num U(i,2:num)=up-(up-under)/num*(i-1);%采用线性赋值对上下边界之间的节点赋迭代初值 end G=1; while G>0 %迭代条件:不满足相对误差限要求的节点数目G不为零 Un=U; %完成第n次迭代后所有节点处的值 G=0; %每完成一次迭代将不满足相对误差限要求的节点数目归零 for j=1:n for i=2:num U1=U(i,j); %第n次迭代时网格节点处的值 if j==1 %第n+1次迭代左边界第二类边界条件 U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j)); end if (j>1)&&(j U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j)); U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的网格节点处的值 end if i==n+1-j %第n+1次迭代两介质分界面(与网格对角线重合)第二类边界条件 U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1))); end if j==n %第n+1次迭代右边界第二类边界条件 U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j)); end end end N=N+1 %显示迭代次数 Un1=U; %完成第n+1次迭代后所有节点处的值 err=abs((Un1-Un)./Un1);%第n+1次迭代与第n次迭代所有节点值的相对误差 err(1,1:n)=0; %上边界节点相对误差置零 err(n,1:n)=0; %下边界节点相对误差置零 G=sum(sum(err>deta))%显示每次迭代后不满足相对误差限要求的节点数目G end
标签: 有限差分
上传时间: 2018-07-13
上传用户:Kemin
这是一个至深老教师总结的模拟电子资料,有兴趣可以一看
标签: 模电
上传时间: 2018-11-11
上传用户:chengwei8556
为了使考核系统软件的开发更容易,这类软件更符合软件工程的要求,本文根据 Struts 和有限状态机的特点,借助于当今公司常用的 Kpi 考核系统,以某个企业 KPI 管理需求为例,讲述了用有限状态机来设计考核系统的方法,以及在 Struts 上具体实现。
上传时间: 2018-12-31
上传用户:DZW123456
Visual Basic(简称VB)是Microsoft公司开发的一种通用的基于对象的程序设计语言,为结构化的、模块化的、面向对象的、包含协助开发环境的事件驱动为机制的可视化程序设计语言。是一种可用于微软自家产品开发的语言。 [1] “Visual” 指的是开发图形用户界面 (GUI) 的方法——不需编写大量代码去描述界面元素的外观和位置,而只要把预先建立的对象add到屏幕上的一点即可。 “Basic”指的是 BASIC (Beginners All-Purpose Symbolic Instruction Code) 语言,是一种在计算技术发展历史上应用得最为广泛的语言。
标签: VB精选
上传时间: 2019-03-06
上传用户:Yingshangling