The LPC4350/30/20/10 are ARM Cortex-M4 based microcontrollers for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB controllers,Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals
上传时间: 2013-10-28
上传用户:15501536189
On the LPC13xx, programming, erasure and re-programming of the on-chip flash can be performed using In-System Programming (ISP) via the UART serial port, and also, can be performed using In-Application Programming (IAP) calls directed by the end-user code. For In-System Programming (ISP) via the UART serial port, the ISP command handler (resides in the bootloader) allows erasure of one or more sector (s) of the on-chip flash memory.
上传时间: 2013-12-13
上传用户:lmq0059
通过以太网远程配置Nios II 处理器 应用笔记 Firmware in embedded hardware systems is frequently updated over the Ethernet. For embedded systems that comprise a discrete microprocessor and the devices it controls, the firmware is the software image run by the microprocessor. When the embedded system includes an FPGA, firmware updates include updates of the hardware image on the FPGA. If the FPGA includes a Nios® II soft processor, you can upgrade both the Nios II processor—as part of the FPGA image—and the software that the Nios II processor runs, in a single remote configuration session.
上传时间: 2013-11-22
上传用户:chaisz
Nios II定制指令用户指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor. The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.
上传时间: 2013-10-12
上传用户:kang1923
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
上传时间: 2013-11-21
上传用户:不懂夜的黑
Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
标签: Solutions Analog Altera FPGAs
上传时间: 2013-10-27
上传用户:fredguo
Applying power to a standard logic chip, SRAM, or EPROM, usually results in output pinstracking the applied voltage as it rises. Programmable logic attempts to emulate that behavior,but physics forbids perfect emulation, due to the device programmability. It requires care tospecify the pin behavior, because programmable parts encounter unknown variables – yourdesign and your power environment.
上传时间: 2013-11-24
上传用户:253189838
Today’s digital systems combine a myriad of chips with different voltage configurations.Designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.
上传时间: 2013-11-10
上传用户:yy_cn
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上传时间: 2013-11-23
上传用户:shen_dafa
The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start development simultaneously.
上传时间: 2013-10-09
上传用户:evil