MAXQUSBJTAGOW评估板软件:关键特性 Easily Load and Debug Code Interface Provides In-Application Debugging Features Step-by-Step Execution Tracing Breakpointing by Code Address, Data Memory Address, or Register Access Data Memory View and Edit Supports Logic Levels from 1.1V to 3.6V Supports JTAG and 1-Wire Protocols Each Adapter Has Its Own Unique Serial ID, Allowing Multiple Adapters to be Connected Without COM Port Conflicts Has In-Field Upgradable Capability if Firmware Needs to be Upgraded Enclosure Protects from Shorts and ESD
标签: MAXQUSBJTAGOW 评估板 软件
上传时间: 2013-11-23
上传用户:truth12
怎样使用Nios II处理器来构建多处理器系统 Chapter 1. Creating Multiprocessor Nios II Systems Introduction to Nios II Multiprocessor Systems . . . . . . . . . . . . . . 1–1 Benefits of Hierarchical Multiprocessor Systems . . . . . . . . . . . . . . . 1–2 Nios II Multiprocessor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2 Multiprocessor Tutorial Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 1–3 Hardware Designs for Peripheral Sharing . . . . . . . . . . . .. . . . . . . . 1–3 Autonomous Multiprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3 Multiprocessors that Share Peripherals . . . . . . . . . . . . . . . . . . . . . . 1–4 Sharing Peripherals in a Multiprocessor System . . . . . . . . . . . . . . . . . 1–4 Sharing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6 The Hardware Mutex Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7 Sharing Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1–8 Overlapping Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8 Software Design Considerations for Multiple Processors . . .. . . . . 1–9 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Boot Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1–13 Debugging Nios II Multiprocessor Designs . . . . . . . . . . . . . . . . 1–15 Design Example: The Dining Philosophers’ Problem . . . . .. . . 1–15 Hardware and Software Requirements . . . . . . . . . . . . . . . .. . . 1–16 Installation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17 Creating the Hardware System . . . . . . . . . . . . . . .. . . . . . 1–17 Getting Started with the multiprocessor_tutorial_start Design Example 1–17 Viewing a Philosopher System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18 Philosopher System Pipeline Bridges . . . . . . . . . . . . . . . . . . . . . 1–19 Adding Philosopher Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21 Connecting the Philosopher Subsystems . . . . . . . . . . . . .. . . . . 1–22 Viewing the Complete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27 Generating and Compiling the System . . . . . . . . . . . . . . . . . .. 1–28
上传时间: 2013-11-21
上传用户:lo25643
使用Nios II紧耦合存储器教程 Chapter 1. Using Tightly Coupled Memory with the Nios II Processor Reasons for Using Tightly Coupled Memory . . . . . . . . . . . . . . . . . . . . . . . 1–1 Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1 Guidelines for Using Tightly Coupled Memory . . . .. . . . . . . . 1–2 Hardware Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2 Software Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1–3 Locating Functions in Tightly Coupled Memory . . . . . . . . . . . . . 1–3 Tightly Coupled Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Dual Port Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1–5 Building a Nios II System with Tightly Coupled Memory . . . . . . . . . . . 1–5
上传时间: 2013-10-13
上传用户:黄婷婷思密达
This application note shows how to achieve low-cost, efficient serial configuration for Spartan FPGA designs. The approachrecommended here takes advantage of unused resources in a design, thereby reducing the cost, part count, memory size,and board space associated with the serial configuration circuitry. As a result, neither processor nor PROM needs to be fullydedicated to performing Spartan configuration.In particular, information is provided on how the idle processing time of an on-board controller can be used to loadconfiguration data from an off-board source. As a result, it is possible to upgrade a Spartan design in the field by sending thebitstream over a network.
上传时间: 2013-11-01
上传用户:wojiaohs
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the Information.
上传时间: 2013-11-11
上传用户:zwei41
This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback clock. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output clock can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or Microblaze™ microprocessor.
上传时间: 2014-11-26
上传用户:erkuizhang
The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.
上传时间: 2013-11-24
上传用户:18707733937
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上传时间: 2013-11-23
上传用户:shen_dafa
Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.
标签: CPLD
上传时间: 2014-12-05
上传用户:qazxsw
信号完整性问题是高速PCB 设计者必需面对的问题。阻抗匹配、合理端接、正确拓扑结构解决信号完整性问题的关键。传输线上信号的传输速度是有限的,信号线的布线长度产生的信号传输延时会对信号的时序关系产生影响,所以PCB 上的高速信号的长度以及延时要仔细计算和分析。运用信号完整性分析工具进行布线前后的仿真对于保证信号完整性和缩短设计周期是非常必要的。在PCB 板子已焊接加工完毕后才发现信号质量问题和时序问题,是经费和产品研制时间的浪费。1.1 板上高速信号分析我们设计的是基于PowerPC 的主板,主要由处理器MPC755、北桥MPC107、北桥PowerSpanII、VME 桥CA91C142B 等一些电路组成,上面的高速信号如图2-1 所示。板上高速信号主要包括:时钟信号、60X 总线信号、L2 Cache 接口信号、Memory 接口信号、PCI 总线0 信号、PCI 总线1 信号、VME 总线信号。这些信号的布线需要特别注意。由于高速信号较多,布线前后对信号进行了仿真分析,仿真工具采用Mentor 公司的Hyperlynx7.1 仿真软件,它可以进行布线前仿真和布线后仿真。
上传时间: 2013-11-17
上传用户:sqq