虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电路原理图1.3寸oled模块的6PIN SPI显示屏电路原理图

  • STM32F103VBT6的核心板PCB和原理图

    STM32F103VBT6的核心板PCB和原理图

    标签: F103 VBT6 STM 103

    上传时间: 2013-06-26

    上传用户:vaidya1bond007b1

  • 21control的系列FPGA开发板原理图

    21control的系列FPGA开发板原理图

    标签: control FPGA 21 开发板原理图

    上传时间: 2013-08-07

    上传用户:lanhuaying

  • DRAM内存模块的设计技术

    第二部分:DRAM 内存模块的设计技术..............................................................143第一章 SDR 和DDR 内存的比较..........................................................................143第二章 内存模块的叠层设计.............................................................................145第三章 内存模块的时序要求.............................................................................1493.1 无缓冲(Unbuffered)内存模块的时序分析.......................................1493.2 带寄存器(Registered)的内存模块时序分析...................................154第四章 内存模块信号设计.................................................................................1594.1 时钟信号的设计.......................................................................................1594.2 CS 及CKE 信号的设计..............................................................................1624.3 地址和控制线的设计...............................................................................1634.4 数据信号线的设计...................................................................................1664.5 电源,参考电压Vref 及去耦电容.........................................................169第五章 内存模块的功耗计算.............................................................................172第六章 实际设计案例分析.................................................................................178 目前比较流行的内存模块主要是这三种:SDR,DDR,RAMBUS。其中,RAMBUS内存采用阻抗受控制的串行连接技术,在这里我们将不做进一步探讨,本文所总结的内存设计技术就是针对SDRAM 而言(包括SDR 和DDR)。现在我们来简单地比较一下SDR 和DDR,它们都被称为同步动态内存,其核心技术是一样的。只是DDR 在某些功能上进行了改进,所以DDR 有时也被称为SDRAM II。DDR 的全称是Double Data Rate,也就是双倍的数据传输率,但是其时钟频率没有增加,只是在时钟的上升和下降沿都可以用来进行数据的读写操作。对于SDR 来说,市面上常见的模块主要有PC100/PC133/PC166,而相应的DDR内存则为DDR200(PC1600)/DDR266(PC2100)/DDR333(PC2700)。

    标签: DRAM 内存模块 设计技术

    上传时间: 2014-01-13

    上传用户:euroford

  • 3节或4节锂电池保护电路

    3节或4节锂电池保护电路,避免过充、过放、过流。

    标签: 锂电池 保护电路

    上传时间: 2013-10-29

    上传用户:归海惜雪

  • 一种无片外电容LDO的瞬态增强电路设计

    利用RC高通电路的思想,针对LDO提出了一种新的瞬态增强电路结构。该电路设计有效地加快了LDO的瞬态响应速度,而且瞬态增强电路工作的过程中,系统的功耗并没有增加。此LDO芯片设计采用SMIC公司的0.18 μm CMOS混合信号工艺。仿真结果表明:整个LDO是静态电流为3.2 μA;相位裕度保持在90.19°以上;在电源电压为1.8 V,输出电压为1.3 V的情况下,当负载电流在10 ns内由100 mA降到50 mA时,其建立时间由原来的和28 μs减少到8 μs;而在负载电流为100 mA的条件下,电源电压在10 ns内,由1.8 V跳变到2.3 V时,输出电压的建立时间由47 μs降低为15 μs。

    标签: LDO 无片外电容 瞬态 电路设计

    上传时间: 2013-12-20

    上传用户:niumeng16

  • 安富利:基于MSP430FE427(A) 模块的电度表解决方案(英文版)

      Avnet Design Service电源实验室开发出基于MSP430FE427(A) 模块的电度表解决方案:   (1)电压 (90Vac~264Vac) 与电流 (10Arms) 测量范围宽   (2)电度表是一种测量用电量的设备   (3)LCD显示电量 (kWh)、功率 (W)、电压 (V)、电流 (A)、功率因数(PF) 与温度 (oC) 测量值   (4)264Vac/63Hz与140mW @90Vac/47Hz条件下,无负载功耗低于300mW   (5)测量精度高达2%

    标签: MSP 430 427 FE

    上传时间: 2013-10-13

    上传用户:cjf0304

  • MCS-51单片机应用设计

    本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。   本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述   1.1 单片机的历史及发展概况   1.2 单片机的发展趋势   1.3 单片机的应用   1.3.1 单片机的特点   1.3.2 单片机的应用范围   1.4 8位单片机的主要生产厂家和机型   1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构   2.1 MCS-51单片机的硬件结构   2.2 MCS-51的引脚   2.2.1 电源及时钟引脚   2.2.2 控制引脚   2.2.3 I/O口引脚   2.3 MCS-51单片机的中央处理器(CPU)   2.3.1 运算部件   2.3.2 控制部件   2.4 MCS-51存储器的结构   2.4.1 程序存储器   2.4.2 内部数据存储器   2.4.3 特殊功能寄存器(SFR)   2.4.4 位地址空间   2.4.5 外部数据存储器   2.5 I/O端口   2.5.1 I/O口的内部结构   2.5.2 I/O口的读操作   2.5.3 I/O口的写操作及负载能力   2.6 复位电路   2.6.1 复位时各寄存器的状态   2.6.2 复位电路   2.7 时钟电路   2.7.1 内部时钟方式   2.7.2 外部时钟方式   2.7.3 时钟信号的输出 第三章 MCS-51的指令系统   3.1 MCS-51指令系统的寻址方式   3.1.1 寄存器寻址   3.1.2 直接寻址   3.1.3 寄存器间接寻址   3.1.4 立即寻址   3.1.5 基址寄存器加变址寄存器间址寻址   3.2 MCS-51指令系统及一般说明   3.2.1 数据传送类指令   3.2.2 算术操作类指令   3.2.3 逻辑运算指令   3.2.4 控制转移类指令   3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器   4.1 定时器/计数器的结构   4.1.1 工作方式控制寄存器TMOD   4.1.2 定时器/计数器控制寄存器TCON   4.2 定时器/计数器的四种工作方式   4.2.1 方式0   4.2.2 方式1   4.2.3 方式2   4.2.4 方式3   4.3 定时器/计数器对输入信号的要求   4.4 定时器/计数器编程和应用   4.4.1 方式o应用(1ms定时)   4.4.2 方式1应用   4.4.3 方式2计数方式   4.4.4 方式3的应用   4.4.5 定时器溢出同步问题   4.4.6 运行中读定时器/计数器   4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口   5.1 串行口的结构   5.1.1 串行口控制寄存器SCON   5.1.2 特殊功能寄存器PCON   5.2 串行口的工作方式   5.2.1 方式0   5.2.2 方式1   5.2.3 方式2   5.2.4 方式3   5.3 多机通讯   5.4 波特率的制定方法   5.4.1 波特率的定义   5.4.2 定时器T1产生波特率的计算   5.5 串行口的编程和应用   5.5.1 串行口方式1应用编程(双机通讯)   5.5.2 串行口方式2应用编程   5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统   6.1 中断请求源   6.2 中断控制   6.2.1 中断屏蔽   6.2.2 中断优先级优   6.3 中断的响应过程   6.4 外部中断的响应时间   6.5 外部中断的方式选择   6.5.1 电平触发方式   6.5.2 边沿触发方式   6.6 多外部中断源系统设计   6.6.1 定时器作为外部中断源的使用方法   6.6.2 中断和查询结合的方法   6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计   7.1 概述   7.1.1 只读存储器   7.1.2 可读写存储器   7.1.3 不挥发性读写存储器   7.1.4 特殊存储器   7.2 存储器扩展的基本方法   7.2.1 MCS-51单片机对存储器的控制   7.2.2 外扩存储器时应注意的问题   7.3 程序存储器EPROM的扩展   7.3.1 程序存储器的操作时序   7.3.2 常用的EPROM芯片   7.3.3 外部地址锁存器和地址译码器   7.3.4 典型EPROM扩展电路   7.4 静态数据存储的器扩展   7.4.1 外扩数据存储器的操作时序   7.4.2 常用的SRAM芯片   7.4.3 64K字节以内SRAM的扩展   7.4.4 超过64K字节SRAM扩展   7.5 不挥发性读写存储器扩展   7.5.1 EPROM扩展   7.5.2 SRAM掉电保护电路   7.6 特殊存储器扩展   7.6.1 双口RAMIDT7132的扩展   7.6.2 快擦写存储器的扩展   7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计   8.1 扩展概述   8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口   8.2.1 8255A芯片介绍   8.2.2 8031单片机同8255A的接口   8.2.3 接口应用举例   8.3 MCS-51与可编程RAM/IO芯片8155H的接口   8.3.1 8155H芯片介绍   8.3.2 8031单片机与8155H的接口及应用   8.4 用MCS-51的串行口扩展并行口   8.4.1 扩展并行输入口   8.4.2 扩展并行输出口   8.5 用74LSTTL电路扩展并行I/O口   8.5.1 用74LS377扩展一个8位并行输出口   8.5.2 用74LS373扩展一个8位并行输入口   8.5.3 MCS-51单片机与总线驱动器的接口   8.6 MCS-51与8253的接口   8.6.1 逻辑结构与操作编址   8.6.2 8253工作方式和控制字定义   8.6.3 8253的工作方式与操作时序   8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口   9.1 LED显示器接口原理   9.1.1 LED显示器结构   9.1.2 显示器工作原理   9.2 键盘接口原理   9.2.1 键盘工作原理   9.2.2 单片机对非编码键盘的控制方式   9.3 键盘/显示器接口实例   9.3.1 利用8155H芯片实现键盘/显示器接口   9.3.2 利用8031的串行口实现键盘/显示器接口   9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口   9.4 MCS-51与液晶显示器(LCD)的接口   9.4.1 LCD的基本结构及工作原理   9.4.2 点阵式液晶显示控制器HD61830介绍   9.5 MCS-51与微型打印机的接口   9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口   9.5.2 MCS-51与GP16微型打印机的接口   9.5.3 MCS-51与PP40绘图打印机的接口   9.6 MCS-51单片机与BCD码拨盘的接口设计   9.6.1 BCD码拨盘   9.6.2 BCD码拨盘与单片机的接口   9.6.3 拨盘输出程序   9.7 MCS-51单片机与CRT的接口   9.7.1 SCIBCRT接口板的主要特点及技术参数   9.7.2 SCIB接口板的工作原理   9.7.3 SCIB与MCS-51单片机的接口   9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口   10.1 有关DAC及ADC的性能指标和选择要点   10.1.1 性能指标   10.1.2 选择ABC和DAC的要点   10.2 MCS-51与DAC的接口   10.2.1 MCS-51与DAC0832的接口   10.2.2 MCS-51同DAC1020及DAC1220的接口   10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口   10.3 MCS-51与ADC的接口   10.3.1 MCS-51与5G14433(双积分型)的接口   10.3.2 MCS-51与ICL7135(双积分型)的接口   10.3.3 MCS-51与ICL7109(双积分型)的接口   10.3.4 MCS-51与ADC0809(逐次逼近型)的接口   10.3.5 8031AD574(逐次逼近型)的接口   10.4 V/F转换器接口技术   10.4.1 V/F转换器实现A/D转换的方法   10.4.2 常用V/F转换器LMX31简介   10.4.3 V/F转换器与MCS-51单片机接口   10.4.4 LM331应用举例 第十一章 标准串行接口及应用   11.1 概述   11.2 串行通讯的接口标准   11.2.1 RS-232C接口   11.2.2 RS-422A接口   11.2.3 RS-485接口   11.2.4 各种串行接口性能比较   11.3 双机串行通讯技术   11.3.1 单片机双机通讯技术   11.3.2 PC机与8031单片机双机通讯技术   11.4 多机串行通讯技术   11.4.1 单片机多机通讯技术   11.4.2 IBM-PC机与单片机多机通讯技术   11.5 串行通讯中的波特率设置技术   11.5.1 IBM-PC/XT系统中波特率的产生   11.5.2 MCS-51单片机串行通讯波特率的确定   11.5.3 波特率相对误差范围的确定方法   11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口   12.1 常用功率器件   12.1.1 晶闸管   12.1.2 固态继电器   12.1.3 功率晶体管   12.1.4 功率场效应晶体管   12.2 开关型功率接口   12.2.1 光电耦合器驱动接口   12.2.2 继电器型驱动接口   12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计   13.1 概述   13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计   13.2.1 MSM5832性能及引脚说明   13.2.2 MSM5832时序分析   13.2.3 8031单片机与MSM5832的接口设计   13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计   13.3.1 MC146818性能及引脚说明   13.3.2 MC146818芯片地址分配及各单元的编程   13.3.3 MC146818的中断   13.3.4 8031单片机与MC146818的接口电路设计   13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序   14.1 查表程序设计   14.2 散转程序设计   14.2.1 使用转移指令表的散转程序   14.2.2 使用地地址偏移量表的散转程序   14.2.3 使用转向地址表的散转程序   14.2.4 利用RET指令实现的散转程序   14.3 循环程序设计   14.3.1 单循环   14.3.2 多重循环   14.4 定点数运算程序设计   14.4.1 定点数的表示方法   14.4.2 定点数加减运算   14.4.3 定点数乘法运算   14.4.4 定点数除法   14.5 浮点数运算程序设计   14.5.1 浮点数的表示   14.5.2 浮点数的加减法运算   14.5.3 浮点数乘除法运算   14.5.4 定点数与浮点数的转换   14.6 码制转换   ……    

    标签: MCS 51 单片机 应用设计

    上传时间: 2013-11-06

    上传用户:xuanjie

  • nios ii 入门手册中文版

    nios ii 入门手册中文版 一、建立quartus ii工程 首先,双击quartus ii 9.1图标打开软件,界面如下图1.1所示 1.1 新建工程 (1) 点击file –>New  Project  Wizard 出现图1.2所示的对话框。 (2) 点击Next。如图1.3所示:第一行是工程的路径,二、三行为实体名。填好后点击Next。 (3)此处可选择加入已设计好的文件到工程,点击Next。 (4)选择设计器件如图1.5所示。接着点击Next (5)接着点击Next。无需改动,点击finish,显示如下图所示。 (6)此时,工程已经建立完成,接下来需要建立一个原理图输入文件,点击file –>New ->Block  Diagram/Schematic  File  后如图所示。

    标签: nios ii 入门手册

    上传时间: 2014-12-25

    上传用户:cx111111

  • 郭天祥老师的TX-1C增强版原理图

    郭天祥老师的TX-1C增强版原理图

    标签: TX 原理图

    上传时间: 2013-10-10

    上传用户:牛津鞋

  • 一个单片机串行数据采集/传输模块的设计

    以GMS97C2051单片机为核心,采用TLC2543 12位串行A/D转换器,设计了一个串行数据采集/传输模块,给出了硬件原理图和主要源程序。关键词:串行A/D转换器;串行数据传输;GMS97C2051单片机   在微机测控系统中,经常要用到A/D转换。常用的方法是扩展一块或多块A/D采集卡。当模拟量较少或是温度、压力等缓变信号场合,采用总线型A/D卡并不是最合适、最经济的方案。这里介绍一种以GNS97C2051单片机为核心,采用TLC2543 12位串行A/D转换器构成的采样模块,该模块的采样数据由单片机串口经电平转换后送到上位机(IBM PC兼容机)的串口COM1或COM2,形成一种串行数据采集串行数据传输的方式。经实践调试证实:该模块功耗低、采样精度高、可靠性好、接口简便,有一定实用价值。

    标签: 单片机串行 传输模块 数据采集

    上传时间: 2014-01-26

    上传用户:sjb555