LDO使用之热阻考虑
上传时间: 2013-10-12
上传用户:bs2005
测试贴片热阻小软件
上传时间: 2013-10-17
上传用户:stampede
测试贴片热阻小软件
上传时间: 2013-11-03
上传用户:xmsmh
关于热阻的一些详细的介绍:从理论分析并加上一些实例来说明
上传时间: 2017-08-25
上传用户:VRMMO
TDA1521是荷兰飞利浦公司设计的低失真度及高稳度的芯片。 其中的参数为:TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的失真仅为0.5%。输入阻抗20KΩ, 输入灵敏度600mV,信噪比达到85dB。其电路设有等待、静噪状态,具有过热保护,低失调电压高纹波抑制,而且热阻极低,具有极佳的高频解析力和低频力度。其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。
上传时间: 2013-07-04
上传用户:myworkpost
结合大功率LED热流模型和结构,我们不难看出,影响大功率LED热阻的主要因素有:1. LED晶片的导热能力;2. 固晶粘合胶的导热能力以及粘合的品质;3. 器件(包括晶片)热通道的长度;4. 灌封材料的热导能力;5. 热沉的热导能力。
上传时间: 2013-11-11
上传用户:caoyuanyuan1818
目前cPU+ Memory等系统集成的多芯片系统级封装已经成为3DSiP(3 Dimension System in Package,三维系统级封装)的主流,非常具有代表性和市场前景,SiP作为将不同种类的元件,通过不同技术,混载于同一封装内的一种系统集成封装形式,不仅可搭载不同类型的芯片,还可以实现系统的功能。然而,其封装具有更高密度和更大的发热密度和热阻,对封装技术具有更大的挑战。因此,对SiP封装的工艺流程和SiP封装中的湿热分布及它们对可靠性影响的研究有着十分重要的意义本课题是在数字电视(DTV)接收端子系统模块设计的基础上对CPU和DDR芯片进行芯片堆叠的SiP封装。封装形式选择了适用于小型化的BGA封装,结构上采用CPU和DDR两芯片堆叠的3D结构,以引线键合的方式为互连,实现小型化系统级封装。本文研究该SP封装中芯片粘贴工艺及其可靠性,利用不导电胶将CPU和DDR芯片进行了堆叠贴片,分析总结了SiP封装堆叠贴片工艺最为关键的是涂布材料不导电胶的体积和施加在芯片上作用力大小,对制成的样品进行了高温高湿试验,分析湿气对SiP封装的可靠性的影响。论文利用有限元软件 Abaqus对SiP封装进行了建模,模型包括热应力和湿气扩散模型。模拟分析了封装体在温度循环条件下,受到的应力、应变、以及可能出现的失效形式:比较了相同的热载荷条件下,改变塑封料、粘结层的材料属性,如杨氏模量、热膨胀系数以及芯片、粘结层的厚度等对封装体应力应变的影响。并对封装进行了湿气吸附分析,研究了SiP封装在85℃RH85%环境下吸湿5h、17h、55和168h后的相对湿度分布情况,还对SiP封装在湿热环境下可能产生的可靠性问题进行了实验研究。在经过168小时湿气预处理后,封装外部的基板和模塑料基本上达到饱和。模拟结果表明湿应力同样对封装的可靠性会产生重要影响。实验结果也证实了,SiP封装在湿气环境下引入的湿应力对可靠性有着重要影响。论文还利用有限元分析方法对超薄多芯片SiP封装进行了建模,对其在温度循环条件下的应力、应变以及可能的失效形式进行了分析。采用二水平正交试验设计的方法研究四层芯片、四层粘结薄膜、塑封料等9个封装组件的厚度变化对芯片上最大应力的影响,从而找到最主要的影响因子进行优化设计,最终得到更优化的四层芯片叠层SiP封装结构。
标签: sip封装
上传时间: 2022-04-08
上传用户:
1,Vs:集射极阻断电压在可使用的结温范围内,栅极和发射极短路状况下,集射极最高电压。手册里一般为25℃下的数据,随着结温的降低,VcEs会逐渐降低。由于模块内外部的杂散电感,IGBT在关断时Vcs最容易超过限值2,Poat:最大允许功耗在25℃时,IGBT开关的最大允许功率损耗,即通过结到壳的热帆所允许的最大耗散功Pat =(Ty-T)/Rtaie其中,Ty为结温, 为环境温度。二极管的最大功耗可以用同样的公式获得。在这里,顺便解释下这几个热阻,Rtice 结到壳的热阻抗,乘以发热量获得结与克的温差;Rthig芯片热源到周围空气的总热阻抗,乘以发热量获得器件温升;Rehb芯片结与PCB间的热阻抗,乘以单板散热量获得与单板的温差。
标签: igbt
上传时间: 2022-06-21
上传用户:
0引言任何器件在工作时都有一定的损耗,大部分的损耗均变成热量。在实际应用过程中,大功率器件IGBT在工作时会产生很大的损耗,这些损耗通常表现为热量。为了使ICBT能正常工作,必须保证IGBT的耗散功率不大于最大允许耗散功率P额定1660 w,室温25℃时),必须保证1GBT的结温T,不超过其最大值Timar 50 ℃),因此必须采用适当的散热装置,将热量传导到外部环境。如果散热装置设计或选用不当,这些大功率器件因过热而损坏。为了在确定的散热条件下设计或选用合适的散热器,确保器件安全、可靠地工作,我们需进行散热计算。散热计算是通过计算器件工作时产生的损耗功率Pa、器件允许的结温T、环境温度T,求出器件允许的总热阻R,f-a);:再根据Raf-a)求出最大允许的散热器到环境温度的热阻Rinf-):最后根据Rbf-a)选取具有合适热阻的散热器。1 IGBT损耗分析及计算对于H型双极模式PWM系统中使用的1GBT模块,主要由IGBT元件和续流二极管FWD组成,它们各自发生的损耗之和就是IGBT本身的损耗。除此,加上1GBT的基极驱动功耗,即构成IGRT模块整体发生的损耗。另外,发生损耗的情况可分为稳态时和交换时。对上述内容进行整理可表述如下:
上传时间: 2022-06-21
上传用户:
热阻是评价IGBT可靠性的重要指标.寻找简便高精度的测量方法对IGBT热阻进行测试具有十分重要的意义.根据JESD51—14中的瞬态热阻抗定义式,提出了一种可以快速、准确计算IGBT模块结壳热阻的方法
上传时间: 2022-06-26
上传用户:20125101110