虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

分类规则

  • 贝叶思网络分类规则例程

    贝叶思网络分类规则例程

    标签: 网络 分类规则

    上传时间: 2014-09-02

    上传用户:yzhl1988

  • C4.5算法有如下优点:产生的分类规则易于理解

    C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

    标签: 4.5 算法 分类规则

    上传时间: 2014-01-21

    上传用户:fanboynet

  • 基于小生境遗传算法的分类规则数据挖掘算法

    基于小生境遗传算法的分类规则数据挖掘算法

    标签: 算法 分类规则 数据挖掘算法

    上传时间: 2016-10-26

    上传用户:lizhen9880

  • 关联分类算法采用贪心算法发现高质量分类规则

    关联分类算法采用贪心算法发现高质量分类规则

    标签: 分类算法 算法 发现 分类规则

    上传时间: 2014-01-25

    上传用户:569342831

  • 提出了一种通过遗传算法(GA)对单个分类器进行优化以及对多个分类器进行组合优化的方法.该方法使用叠加(stacking)的策略.经典的叠加策略分为两步,该方法将遗传算法作为叠加策略的第2步.实验结果表

    提出了一种通过遗传算法(GA)对单个分类器进行优化以及对多个分类器进行组合优化的方法.该方法使用叠加(stacking)的策略.经典的叠加策略分为两步,该方法将遗传算法作为叠加策略的第2步.实验结果表明,遗传算法可以较好地完成优化任务,同单个分类器比较,它可以提高分类的精度.在对分类器进行组合优化方面,它得到比单个分类器更高的精度以及使分类结果具有更好的可理解性. 关 键 词: 分类 遗传算法 优化 机器学习 数据挖掘 分类规则.

    标签: stacking 叠加 策略 算法

    上传时间: 2014-02-13

    上传用户:Altman

  • 基于ARM的掌形识别门禁系统研究与设计

    自“9.11”后,随着人们对安防需求的升级,门禁控制系统得到日益广泛的应用,不断提高门禁系统的安全性成为研究的重要课题。第四代门禁系统结合了人体生物特征识别技术,利用人体本身具有的物理特征(如指纹、虹膜、脸型、掌纹等)或行为特征(如步态、签名等)来确定人的身份,取代或加强传统的身份识别方法。 论文采用掌形识别为控制方案,基于ARM920T内核的EP9315芯片为门禁系统CPU,设计和调试了系统的硬件平台。 论文研究了掌形识别算法,进行了三方面的工作。 首先研究了掌形中的手形特征,提出了一种基于骨架特征的手形识别算法,很好的克服了手指旋转给识别带来的干扰。 然后研究了掌形中的掌纹特征,通过系列图像处理,分离出手掌的三条主线,提取主线端点,并在主线上等间隔采样,利用端点和采样点进行匹配,拥有很高的识别率。 最后结合手形与掌纹特征,实现掌形识别。依据手形特征对掌形库进行粗分类,利用掌纹特征进行匹配,算法拥有很快的识别速度与稳定较高的识别率。对分类规则提出了新思路与方法。 论文还提出了基于ARM的门禁系统方案。成功设计了以基于ARM920T内核的EP9315芯片为CPU的最小系统,设计PCB图并制板,最后调试了系统的底层电路。 论文的研究设计工作,通过提高掌形识别算法的识别率,达到了提高门禁系统安全性的目的;ARM平台的设计与调试,在工程实际中有参考价值。

    标签: ARM 识别 系统研究 门禁

    上传时间: 2013-04-24

    上传用户:zsjzc

  • 子空间模式识别方法

    提出了一种改进的LSM-ALSM子空间模式识别方法,将LSM的旋转策略引入ALSM,使子空间之间互不关联的情况得到改善,提高了ALSM对相似样本的区分能力。讨论中以性能函数代替经验函数来确定拒识规则的参数,实现了识别率、误识率与拒识率之间的最佳平衡;通过对有限字符集的实验结果表明,LSM-ALSM算法有效地改善了分类器的识别率和可靠性。关 键 词 学习子空间; 性能函数; 散布矩阵; 最小描述长度在子空间模式识别方法中,一个线性子空间代表一个模式类别,该子空间由反映类别本质的一组特征矢量张成,分类器根据输入样本在各子空间上的投影长度将其归为相应的类别。典型的子空间算法有以下三种[1, 2]:CLAFIC(Class-feature Information Compression)算法以相关矩阵的部分特征向量来构造子空间,实现了特征信息的压缩,但对样本的利用为一次性,不能根据分类结果进行调整和学习,对样本信息的利用不充分;学习子空间方法(Leaning Subspace Method, LSM)通过旋转子空间来拉大样本所属类别与最近邻类别的距离,以此提高分类能力,但对样本的训练顺序敏感,同一样本训练的顺序不同对子空间构造的影响就不同;平均学习子空间算法(Averaged Learning Subspace Method, ALSM)是在迭代训练过程中,用错误分类的样本去调整散布矩阵,训练结果与样本输入顺序无关,所有样本平均参与训练,其不足之处是各模式的子空间之间相互独立。针对以上问题,本文提出一种改进的子空间模式识别方法。子空间模式识别的基本原理1.1 子空间的分类规则子空间模式识别方法的每一类别由一个子空间表示,子空间分类器的基本分类规则是按矢量在各子空间上的投影长度大小,将样本归类到最大长度所对应的类别,在类x()iω的子空间上投影长度的平方为()211,2,,()argmax()jMTkkjpg===Σx􀀢 (1)式中 函数称为分类函数;为子空间基矢量。两类的分类情况如图1所示。

    标签: 子空间 模式 识别方法

    上传时间: 2013-12-25

    上传用户:熊少锋

  • 数据仓库与数据挖掘

    数据仓库与数据挖掘,相信很多人不陌生了吧,该文档是讲述分类规则

    标签: 数据仓库 数据挖掘

    上传时间: 2014-01-15

    上传用户:cxl274287265

  • 一种规则和贝叶斯方法相结合的文本自动分类策略

    一种规则和贝叶斯方法相结合的文本自动分类策略

    标签: 贝叶斯方法 自动 分类 策略

    上传时间: 2014-12-20

    上传用户:hwl453472107

  • 农业专家系统中分类产生式规则的知识表示方法

    农业专家系统中分类产生式规则的知识表示方法

    标签: 农业 分类

    上传时间: 2014-01-10

    上传用户:wfeel