The MAX17600–MAX17605 devices are high-speedMOSFET drivers capable of sinking /sourcing 4A peakcurrents. The devices have various inverting and noninvertingpart options that provide greater flexibility incontrolling the MOSFET. The devices have internal logiccircuitry that prevents shoot-through during output-statchanges. The logic inputs are protected against voltagespikes up to +14V, regardless of VDD voltage. Propagationdelay time is minimized and matched between the dualchannels. The devices have very fast switching time,combined with short propagation delays (12ns typ),making them ideal for high-frequency circuits. Thedevices operate from a +4V to +14V single powersupply and typically consume 1mA of supply current.The MAX17600/MAX17601 have standard TTLinput logic levels, while the MAX17603 /MAX17604/MAX17605 have CMOS-like high-noise margin (HNM)input logic levels. The MAX17600/MAX17603 are dualinverting input drivers, the MAX17601/MAX17604 aredual noninverting input drivers, and the MAX17602 /MAX17605 devices have one noninverting and oneinverting input. These devices are provided with enablepins (ENA, ENB) for better control of driver operation.
上传时间: 2013-12-20
上传用户:zhangxin
The LTC®1966 is a true RMS-to-DC converter that uses aDS computational technique to make it dramatically simplerto use, significantly more accurate, lower in powerconsumption and more flexible than conventional logantilogRMS-to-DC converters. The LTC1966 RMS-to-DCconverter has an input signal range from 5mVRMS to1.5VRMS (a 50dB dynamic range with a single 5V supplyrail) and a 3dB bandwidth of 800kHz with signal crestfactors up to four.
上传时间: 2013-10-12
上传用户:qilin
The 14-bit LTC2351-14 is a 1.5Msps, low power SARADC with six simultaneously sampled differential inputchannels. It operates from a single 3V supply and featuressix independent sample-and-hold amplifi ers and a singleADC. The single ADC with multiple S/HAs enables excellentrange match (1mV) between channels and channel-tochannelskew (200ps).
上传时间: 2014-12-23
上传用户:天诚24
A fully differential amplifi er is often used to converta single-ended signal to a differential signal, a designwhich requires three signifi cant considerations: theimpedance of the single-ended source must match thesingle-ended impedance of the differential amplifi er,the amplifi er’s inputs must remain within the commonmode voltage limits and the input signal must be levelshifted to a signal that is centered at the desired outputcommon mode voltage.
上传时间: 2013-11-09
上传用户:wweqas
Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.
上传时间: 2013-11-23
上传用户:rocketrevenge
Application considerations and circuits for the LT1001 and LT1002 single and dual precision amplifiers are illustrated in a number of circuits, including strain gauge signal conditioners, linearized platinum RTD circuits, an ultra precision dead zone circuit for motor servos and other examples.
上传时间: 2013-10-18
上传用户:dreamboy36
This reference design (RD) features a fullyassembled and tested surface-mount printed circuitboard (PCB). The RD board utilizes the MAX48851:2 or 2:1 multiplexer and other ICs to implement acomplete video graphics array (VGA) 8:1multiplexer.VGA input/output connections are provided to easilyinterface the MAX4885 RD board with VGAcompatibledevices. The RD board gives the optionto use a single 5V DC power supply (V+), or this RDboard can be powered from any one of the eight VGA sources.
标签: multiplexer reference VGA
上传时间: 2013-11-09
上传用户:ANRAN
OPTOELECTRONICS CIRCUIT COLLECTION AVALANCHE PHOTODIODE BIAS SUPPLY 1Provides an output voltage of 0V to +80V for reverse biasingan avalanche photodiode to control its gain. This circuit canalso be reconfigured to supply a 0V to –80V output.LINEAR TEC DRIVER–1This is a bridge-tied load (BTL) linear amplifier for drivinga thermoelectric cooler (TEC). It operates on a single +5Vsupply and can drive ±2A into a common TEC.LINEAR TEC DRIVER–2This is very similar to DRIVER–1 but its power output stagewas modified to operate from a single +3.3V supply in orderto increase its efficiency. Driving this amplifier from astandard +2.5V referenced signal causes the output transistorsto have unequal power dissipation.LINEAR TEC DRIVER–3This BTL TEC driver power output stage achieves very highefficiency by swinging very close to its supply rails, ±2.5V.This driver can also drive ±2A into a common TEC. Operationis shown with the power output stage operating on±1.5V supplies. Under these conditions, this linear amplifiercan achieve very high efficiency. Application ReportThe following collection of analog circuits may be useful in electro-optics applications such as optical networkingsystems. This page summarizes their salient characteristics.
上传时间: 2013-10-27
上传用户:落花无痕
模拟集成电路的设计与其说是一门技术,还不如说是一门艺术。它比数字集成电路设计需要更严格的分析和更丰富的直觉。严谨坚实的理论无疑是严格分析能力的基石,而设计者的实践经验无疑是诞生丰富直觉的源泉。这也正足初学者对学习模拟集成电路设计感到困惑并难以驾驭的根本原因。.美国加州大学洛杉机分校(UCLA)Razavi教授凭借着他在美国多所著名大学执教多年的丰富教学经验和在世界知名顶级公司(AT&T,Bell Lab,HP)卓著的研究经历为我们提供了这本优秀的教材。本书自2000午出版以来得到了国内外读者的好评和青睐,被许多国际知名大学选为教科书。同时,由于原著者在世界知名顶级公司的丰富研究经历,使本书也非常适合作为CMOS模拟集成电路设计或相关领域的研究人员和工程技术人员的参考书。... 本书介绍模拟CMOS集成电路的分析与设计。从直观和严密的角度阐述了各种模拟电路的基本原理和概念,同时还阐述了在SOC中模拟电路设计遇到的新问题及电路技术的新发展。本书由浅入深,理论与实际结合,提供了大量现代工业中的设计实例。全书共18章。前10章介绍各种基本模块和运放及其频率响应和噪声。第11章至第13章介绍带隙基准、开关电容电路以及电路的非线性和失配的影响,第14、15章介绍振荡器和锁相环。第16章至18章介绍MOS器件的高阶效应及其模型、CMOS制造工艺和混合信号电路的版图与封装。 1 Introduction to Analog Design 2 Basic MOS Device Physics 3 single-Stage Amplifiers 4 Differential Amplifiers 5 Passive and Active Current Mirrors 6 Frequency Response of Amplifiers 7 Noise 8 Feedback 9 Operational Amplifiers 10 Stability and Frequency Compensation 11 Bandgap References 12 Introduction to Switched-Capacitor Circuits 13 Nonlinearity and Mismatch 14 Oscillators 15 Phase-Locked Loops 16 Short-Channel Effects and Device Models 17 CMOS Processing Technology 18 Layout and Packaging
上传时间: 2014-12-23
上传用户:杜莹12345
Abstract: Rail splitting is creating an artificial virtual ground as a reference voltage. It is used to set the signalto match the op amp's "sweet spot." An op amp has the most linear- and distortion-free qualities at that sweetspot. Typically, the sweet spot occurs near the center between the single power rail and ground. In the case ofa number of signals, the virtual ground can control channel DC errors when multiplexing or switching thesignals.
上传时间: 2013-10-23
上传用户:wushengwu