The LPC4350/30/20/10 are ARM Cortex-M4 based microcontrollers for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB controllers,Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals
上传时间: 2013-10-28
上传用户:15501536189
Cimatron E 7.0教程 使用Cimatron E 起草应用,建立部分或者组装图图表是可能的,由2D 风景组成。在画的每一个内有一条或更多床单,起草的符号和注释可能被增加并且编辑。 这些画图表包含象 起草标准那样的具体的特性,意见归因于,框架,模板等等。在各种各样的起草的概念将的这个练习过程中沿着边讨论Cimatron E的动态的能力。 1、打开一份起草的资料 Open up the Drafting application within Cimatron E. 2、现在起草应用的Cimatron 打开 资料在Cimatron E里使用起草被叫为一张画。 有一条床单的一张画被创造一份起草的资料自动创 造。 3、建立床单 一条床单包含一个一个模型,部分或者会议的2D 意见的布局。 除2D之外几何学建立使用 sketcher,起草符号,注释能被增加给床单。 无限的床单的数量能被归入一张画允许一象要求 的那样安排许多意见。
上传时间: 2014-12-31
上传用户:13817753084
中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman
Nios II定制指令用户指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor. The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.
上传时间: 2013-10-12
上传用户:kang1923
good good study ,day day up
上传时间: 2014-01-04
上传用户:waitingfy
Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
标签: Solutions Analog Altera FPGAs
上传时间: 2013-10-27
上传用户:fredguo
Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
标签: Solutions Analog Xilinx FPGAs
上传时间: 2013-11-07
上传用户:suicone
In the past decade, the size and complexity of manyFPGA designs exceeds the time and resourcesavailable to most design teams, making the use andreuse of Intellectual Property (IP) imperative.However, integrating numerous IP blocks acquiredfrom both internal and external sources can be adaunting challenge that often extends, rather thanshortens, design time. As today's designs integrateincreasing amounts of functionality, it is vital thatdesigners have access to proven, up-to-date IP fromreliable sources.
上传时间: 2013-11-11
上传用户:csgcd001
This application note describes the implementation of a two-dimensional Rank Order filter. Thereference design includes the RTL VHDL implementation of an efficient sorting algorithm. Thedesign is parameterizable for input/output precision, color standards, filter kernel size,maximum horizontal resolution, and implementation options. The rank to be selected can bemodified dynamically, and the actual horizontal resolution is picked up automatically from theinput synchronization signals. The design has a fully synchronous interface through the ce, clk,and rst ports.
上传时间: 2013-12-14
上传用户:逗逗666
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上传时间: 2013-11-23
上传用户:shen_dafa