Abstract: This application note illustrates the flexibility of the MAX7060 ASK/FSK transmitter. While the currently available evaluationkit (EV kit) has been optimized for the device's use in a specific frequency band (i.e., 288MHz to 390MHz), this document addresseshow the EV kit circuitry can be modified for improved operation at 433.92MHz, a frequency commonly used in Europe. Twoalternative match and filter configurations are presented: one for optimizing drain efficiency, the other for achieving higher transmitpower. Features and capabilities of earlier Maxim industrial, scientific, and medical radio-frequency (ISM-RF) transmitters areprovided, allowing comparison of the MAX7060 to its predecessors. Several design guidelines and cautions for using the MAX7060are discussed.
上传时间: 2013-11-14
上传用户:swaylong
Abstract: This application note helps system designers choose the correct external components for use with the MAX16948 dualremote antenna LDO/switch, thus ensuring that automobile-regulated phantom antenna supply and output-current-monitoring circuitrymeet performance objectives. An electronic calculator is provided that helps specify the critical external components for theMAX16948, thus reducing design time. The calculator also determines the device's analog output voltage, output current-limitthreshold, and output current-sensing accuracies. The calculator includes new automatic Step By Step feature that assists designerswith component choice. To use the new automatic feature, click on the Step By Step button relative to the desired section.
上传时间: 2013-11-04
上传用户:lhll918
The LTC®3207/LTC3207-1 is a 600mA LED/Camera driverwhich illuminates 12 Universal LEDs (ULEDs) and onecamera fl ash LED. The ULEDs are considered universalbecause they may be individually turned on or off, setin general purpose output (GPO) mode, set to blink at aselected on-time and period, or gradate on and off at aselected gradation rate. This device also has an externalenable (ENU) pin that may be used to blink, gradate, orturn on/off the LEDs without using the I2C bus. This may beuseful if the microprocessor is in sleep or standby mode. Ifused properly, these features may save valuable memoryspace, programming time, and reduce the I2C traffi c.
上传时间: 2014-01-04
上传用户:LANCE
It would not be an exaggeration to say that semiconductor devices have transformed humanlife. From computers to communications to internet and video games these devices and the technologies they have enabled have expanded human experience in a way that is unique in history. Semiconductor devices have exploited materials, physics and imaginative applications to spawn new lifestyles. Of course for the device engineer, in spite of the advances, the challenges of reaching higher frequency, lower power consumption, higher power generation etc.
上传时间: 2013-10-28
上传用户:songnanhua
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
标签: PicoBlaze Create Master Xilinx
上传时间: 2013-11-12
上传用户:大三三
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
上传时间: 2013-11-21
上传用户:不懂夜的黑
This application note describes how to implement the Bus LVDS (BLVDS) interface in the supported Altera ® device families for high-performance multipoint applications. This application note also shows the performance analysis of a multipoint application with the Cyclone III BLVDS example.
标签: Implementing LVDS 522 Bus
上传时间: 2013-10-26
上传用户:苏苏苏苏
Most designers wish to utilize as much of a device as possible in order to enhance the overallproduct performance, or extend a feature set. As a design grows, inevitably it will exceed thearchitectural limitations of the device. Exactly why a design does not fit can sometimes bedifficult to determine. Programmable logic devices can be configured in almost an infinitenumber of ways. The same design may fit when you use certain implementation switches, andfail to fit when using other switches. This application note attempts to clarify the CPLD softwareimplementation (CPLDFit) options, as well as discuss implementation tips in CoolRunnerTM-IIdesigns in order to maximize CPLD utilization.
上传时间: 2014-01-11
上传用户:a471778
Applying power to a standard logic chip, SRAM, or EPROM, usually results in output pinstracking the applied voltage as it rises. Programmable logic attempts to emulate that behavior,but physics forbids perfect emulation, due to the device programmability. It requires care tospecify the pin behavior, because programmable parts encounter unknown variables – yourdesign and your power environment.
上传时间: 2013-11-24
上传用户:253189838
This application note provides a functional description of VHDL source code for a N x N DigitalCrosspoint Switch. The code is designed with eight inputs and eight outputs in order to targetthe 128-macrocell CoolRunner™-II CPLD device but can be easily expanded to target higherdensity devices. To obtain the VHDL source code described in this document, go to sectionVHDL Code, page 5 for instructions.
标签: CoolRunner-II XAPP CPLD 380
上传时间: 2013-10-26
上传用户:kiklkook