Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board Designs.
上传时间: 2013-11-23
上传用户:kangqiaoyibie
This introduction covers the fundamentals of VHDL as applied to Complex ProgrammableLogic Devices (CPLDs). Specifically included are those design practices that translate soundlyto CPLDs, permitting designers to use the best features of this powerful language to extractoptimum performance for CPLD Designs.
上传时间: 2013-11-21
上传用户:gtf1207
The exacting technological demands created byincreasing bandwidth requirements have given riseto significant advances in FPGA technology thatenable engineers to successfully incorporate highspeedI/O interfaces in their Designs. One aspect ofdesign that plays an increasingly important role isthat of the FPGA package. As the interfaces get fasterand wider, choosing the right package has becomeone of the key considerations for the systemdesigner.
上传时间: 2013-11-07
上传用户:wanghui2438
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof Designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the Information.
上传时间: 2013-11-11
上传用户:zwei41
In this paper, we discuss efficient coding and design styles using verilog. This can beimmensely helpful for any digital designer initiating Designs. Here, we address different problems rangingfrom RTL-Gate Level simulation mismatch to race conditions in writing behavioral models. All theseproblems are accompanied by an example to have a better idea, and these can be taken care off if thesecoding guidelines are followed. Discussion of all the techniques is beyond the scope of this paper, however,here we try to cover a few of them.
标签: Efficient Verilog Digital Coding
上传时间: 2013-11-23
上传用户:我干你啊
FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive Designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development
标签: Methodology Design Reuse FPGA
上传时间: 2013-11-01
上传用户:shawvi
Finite state machines are widely used in digital circuit Designs. Generally, when designing a state machine using an HDL, the synthesis tools will optimize away all states that cannot be reached and generate a highly optimized circuit. Sometimes, however, the optimization is not acceptable. For example, if the circuit powers up in an invalid state, or the circuit is in an extreme working environment and a glitch sends it into an undesired state, the circuit may never get back to its normal operating condition.
标签: Creating Machines Mentor State
上传时间: 2013-11-02
上传用户:xauthu
Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of Designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.
标签: CPLD
上传时间: 2014-12-05
上传用户:qazxsw
This document provides practical, common guidelines for incorporating PCI Express interconnect layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard Designs to 10- layer or more server baseboard Designs. Guidelines and constraints in this document are intended for use on both baseboard and add-in card PCB Designs. This includes interconnects between PCI Express devices located on the same baseboard (chip-to-chip routing) and interconnects between a PCI Express device located “down” on the baseboard and a device located “up” on an add-in card attached through a connector. This document is intended to cover all major components of the physical interconnect including design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card edge-finger and connector considerations. The intent of the guidelines and examples is to help ensure that good high-speed signal design practices are used and that the timing/jitter and loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect. However, while general physical guidelines and suggestions are given, they may not necessarily guarantee adequate performance of the interconnect for all layouts and implementations. Therefore, designers should consider modeling and simulation of the interconnect in order to ensure compliance to all applicable specifications. The document is composed of two main sections. The first section provides an overview of general topology and interconnect guidelines. The second section concentrates on physical layout constraints where bulleted items at the beginning of a topic highlight important constraints, while the narrative that follows offers additional insight.
上传时间: 2014-01-24
上传用户:s363994250
The power of programmability gives industrial automation designers a highly efficient, cost-effective alternative to traditional motor control units (MCUs)。 The parallel-processing power, fast computational speeds, and connectivity versatility of Xilinx® FPGAs can accelerate the implementation of advanced motor control algorithms such as Field Oriented Control (FOC)。 Additionally, Xilinx devices lower costs with greater on-chip integration of system components and shorten latencies with high-performance digital signal processing (DSP) that can tackle compute-intensive functions such as PID Controller, Clark/Park transforms, and Space Vector PWM. The Xilinx Spartan®-6 FPGA Motor Control Development Kit gives designers an ideal starting point for evaluating time-saving, proven, motor-control reference Designs. The kit also shortens the process of developing custom control capabilities, with integrated peripheral functions (Ethernet, PowerLink, and PCI® Express), a motor-control FPGA mezzanine card (FMC) with built-in Texas Instruments motor drivers and high-precision Delta-Sigma modulators, and prototyping support for evaluating alternative front-end circuitry.
上传时间: 2013-10-28
上传用户:wujijunshi