This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing ControlLER (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上传时间: 2013-11-14
上传用户:fdmpy
ref-sdr-sdram-vhdl代码 SDR SDRAM ControlLER v1.1 readme.txt This readme file for the SDR SDRAM ControlLER includes information that was not incorporated into the SDR SDRAM ControlLER White Paper v1.1. The PLL is targeted at APEX(TM) devices. Please regenerate for your chosen architecture. Last updated September, 2002 Copyright ?2002 Altera Corporation. All rights reserved.
上传时间: 2013-11-13
上传用户:takako_yang
a8259 可编程中断控制 altera提供 The a8259 is designed to simplify the implementation of the interrupt interface in 8088 and 8086 based microcomputer systems. The device is known as a programmable interrupt ControlLER. The a8259 receives and prioritizes up to 8 interrupts, and in the cascade mode, this can be expanded up to 64 interrupts. An asynchronous reset and a clock input have been added to improve operation and reliability.
上传时间: 2014-11-29
上传用户:zhyiroy
Modbus详解(全书+PDF)
标签: Modbus ControlLER Based
上传时间: 2013-10-09
上传用户:lijinchuan
This application note describes a reference system which illustrates how to build an embeddedPowerPC® system using the Xilinx 1-Gigabit Ethernet Media Access ControlLER processor core.This system has the PLB_Gemac configured to use Scatter/Gather Direct Memory Access andthe Serializer/Deserializer (SerDes) interface. This application note describes how to set up thespecific clocking structure required for the SerDes interface and the constraints to be added tothe UCF file. This reference system is complete with a standalone software application to testsome of the main features of this core, including access to registers, DMA capabilities, transmitand receive in loopback mode. This reference system is targeted for the ML300 evaluationboard.
上传时间: 2013-11-01
上传用户:truth12
The NCV7356 is a physical layer device for a single wire data linkcapable of operating with various Carrier Sense Multiple Accesswith Collision Resolution (CSMA/CR) protocols such as the BoschControlLER Area Network (CAN) version 2.0. This serial data linknetwork is intended for use in applications where high data rate is notrequired and a lower data rate can achieve cost reductions in both thephysical media components and in the microprocessor and/ordedicated logic devices which use the network.The network shall be able to operate in either the normal data ratemode or a high-speed data download mode for assembly line andservice data transfer operations. The high-speed mode is onlyintended to be operational when the bus is attached to an off-boardservice node. This node shall provide temporary bus electrical loadswhich facilitate higher speed operation. Such temporary loads shouldbe removed when not performing download operations.The bit rate for normal communications is typically 33 kbit/s, forhigh-speed transmissions like described above a typical bit rate of83 kbit/s is recommended. The NCV7356 features undervoltagelockout, timeout for faulty blocked input signals, output blankingtime in case of bus ringing and a very low sleep mode current.
上传时间: 2013-10-24
上传用户:s蓝莓汁
The NXP LPC314x combine a 270 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash ControlLER, flexible external bus interface, three channel10-bit A/D, and a myriad of serial and parallel interfaces in a single chip targeted atconsumer, industrial, medical, and communication markets. To optimize system powerconsumption, the LPC314x have multiple power domains and a very flexible ClockGeneration Unit (CGU) that provides dynamic clock gating and scaling.
上传时间: 2013-10-11
上传用户:yuchunhai1990
The LPC1850/30/20/10 are ARM Cortex-M3 based microControlLERs for embeddedapplications. The ARM Cortex-M3 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC1850/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals. The ARMCortex-M3 CPU also includes an internal prefetch unit that supports speculativebranching.The LPC1850/30/20/10 include up to 200 kB of on-chip SRAM data memory, a quad SPIFlash Interface (SPIFI), a State Configuration Timer (SCT) subsystem, two High-speedUSB ControlLERs, Ethernet, LCD, an external memory ControlLER, and multiple digital andanalog peripherals.
上传时间: 2014-12-31
上传用户:zhuoying119
The LPC4350/30/20/10 are ARM Cortex-M4 based microControlLERs for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB ControlLERs,Ethernet, LCD, an external memory ControlLER, and multiple digital and analog peripherals
上传时间: 2013-10-28
上传用户:15501536189
The NXP LPC315x combine an 180 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash ControlLER, flexible external bus interface, an integratedaudio codec, Li-ion charger, Real-Time Clock (RTC), and a myriad of serial and parallelinterfaces in a single chip targeted at consumer, industrial, medical, and communicationmarkets. To optimize system power consumption, the LPC315x have multiple powerdomains and a very flexible Clock Generation Unit (CGU) that provides dynamic clockgating and scaling.The LPC315x is implemented as multi-chip module with two side-by-side dies, one fordigital fuctions and one for analog functions, which include a Power Supply Unit (PSU),audio codec, RTC, and Li-ion battery charger.
上传时间: 2014-01-17
上传用户:Altman