虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

大电流

  • NCV4269低功耗5V稳压源产品简介手册

    NCV4269是一款精准的低功耗5V稳压源,它的输出电流负载为150mA。输出电压的精确度为±2.0%,在输出电流为100mA时输出电压的最大纹波电压为0.5V。NCV4269的最大特点就是静态电流小,在输出电流为1.0mA时静态电流只有240μA。这一特点非常适合应用与利用电池供电的微处理器设备。

    标签: 4269 NCV 低功耗 产品简介

    上传时间: 2013-11-08

    上传用户:yimoney

  • 基于ADS8482与TMS320F28335的信号采集系统

    针对加速度计电流信号微弱,给出一种大动态范围的高速高精度信号采集系统。介绍模数转换器ADS8482的性能和工作原理,并给出ADS8482与DSP TMS320F28335的接口设计方案,包括部分硬件电路和软件编程代码。外围扩展的CPLD EPM7128控制ADS8482。该方案实现的加速度计检测装置简单实用,可应用于中低精度的惯性测量中。

    标签: F28335 28335 8482 320F

    上传时间: 2013-11-21

    上传用户:hongmo

  • 基于P89V51RD2单片机的TPAM软启动装置的研究

    基于P89V51RD2单片机的TPAM软启动装置的研究:文中针对TPAM 传统启动方式启动电流大、启动时间长等缺陷,研究了基于电力电子技术的TPAM软启动技术,提出以P89V51RD2 为核心的软启动装置的设计方案。该软启动装置采用晶闸管调压方式,通过改变晶闸管的触发角来实现对TPAM 定子两端电压调节,从而实现了TPAM的软启动。关键词:TPAM;软启动;单片机

    标签: TPAM P89 89V V51

    上传时间: 2013-11-03

    上传用户:spman

  • 带24位AD转换的51单片机MSC1210及其应用

    无论是功能,还是性能,德州仪器(TI)的MSC1210单片机都达到了混合信号处理的颠峰,它集成了一个增强型8051内核,有8路24位低功耗(4roW)A. A/D转换器;21个中断源;16位PWM;全双工UART(并兼容有SPI功能);停止方式电流小于1 A;比标准8051内核执行速度快3倍且全兼容;片内集成32K字节FLASH,而且FLASH可定义为程序分区与数据存储分区,给设计带来非常大的灵活性;片内SRAM也多达1.2K字节;采用TQFP64小型封装。由于具有如此高的模拟和数字集成度,对各种要求小体积、高集成度和精确测量而言,MCS1210实为理想的整合选择。表1列出MSC1210的主要特性。

    标签: 1210 MSC 24位 AD转换

    上传时间: 2013-10-11

    上传用户:yangzhiwei

  • MSP430系列超低功耗16位单片机原理与应用

    MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。  《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录  第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?

    标签: MSP 430 超低功耗 位单片机

    上传时间: 2014-05-07

    上传用户:lwq11

  • 智能直流高频开关电源系统微机监控模块的研制

    智能直流高频开关电源系统微机监控模块的研制:摘要:智能直流高频开关电源系统以其高精度、低纹波、高效率等特性而正在逐步取代传统的可控硅整流装置。文章介绍了智能直流高频开关电源系统的特点及功能。给出一种双微机监控直流系统的构成方法以及微机监控模块的工作原理。关键词:单片机; 监控; 直流电源; 蓄电池2 高性能、高可靠性和高效率的直流电源系统在电力、电信、石化以及冶金等诸多领域中都有着相当广泛的应用。随着高频开关电源技术、应用电子技术和计算机技术的高速发展,直流高频开关电源系统依靠它的高精度、低纹波、高效率及功率因数等优越性能,正在逐步取代传统的可控硅整流装置。随着阀控式蓄电池(免维护蓄电池)越来越多地应用于直流电源系统,以及对直流系统的苛刻要求,高频开关电源的应用也日益广泛。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使阀控式蓄电池的使用寿命大大增加。此外,由于智能直流高频开关电源系统可以完全处于微机的智能化控制之下而不需要人为干预便可完成对整个系统的测量和控制。因此,采用智能高频开关电源可以最大限度地提高系统的性能。下面介绍智能直流高频开关电源系统及其微机监控模块的工作原理。

    标签: 直流 电源系统 微机监控 模块

    上传时间: 2014-12-28

    上传用户:gokk

  • MCP定时器的死区插入

    MCP定时器的死区插入: 在双极性PWM驱动系统中,上下桥臂的电力开关器件交替导通(如图1-1的半桥电路)。图1-1 电力开关半桥电路理想情况下,电力开关器件的开启和关断是不需要时间的,这时只要上下桥臂的驱动信号只要相反就可以;而实际的电力开关器件的开启和关断是需要时间的,而且关断时间比开启时间要长,这时就会出现一桥臂尚没有完全关闭的情况下,另一桥臂就导通了,这就会出现上下桥臂同时导通的情况,致使电源短路,出现很大的直通电流,导致电力器件大量发热,不但会造成电源浪费,还可能烧毁电力开关器件。因此,为避免出现上下桥臂直通的现象,就需要在一桥臂开始前,保证另一桥臂完全关断,为此,在PWM驱动信号中插入死区保护时间,如图1-2中的灰条所示(这个信号是电力器件在低电平导通,高电平关断的情况)。

    标签: MCP 定时器 死区

    上传时间: 2013-11-14

    上传用户:dgann

  • 用单片机AT89C51改造普通双桶洗衣机

    用单片机AT89C51改造普通双桶洗衣机:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。电路工作原理  本数字电容表以电容器的充电规律作为测量依据,测试原理见图1。电源电路图。 压E+经电阻R给被测电容CX充电,CX两端原电压随充电时间的增加而上升。当充电时间t等于RC时间常数τ时,CX两端电压约为电源电压的63.2%,即0.632E+。数字电容表就是以该电压作为测试基准电压,测量电容器充电达到该电压的时间,便能知道电容器的容量。例如,设电阻R的阻值为1千欧,CX两端电压上升到0.632E+所需的时间为1毫秒,那么由公式τ=RC可知CX的容量为1微法。  测量电路如图2所示。A为AT89C2051内部构造的电压比较器,AT89C2051 图2 的P1.0和P1.1口除了作I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器,P3.6口在AT89C2051外部无引脚。电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。以P3.6口的输出电平为依据,用AT89C2051内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。整机电路见图3。电路由单片机电路、电容充电测量电路和数码显示电路等 图3 部分组成。AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。由于999K和1M相对误差较小,所以R2还是取1M。数码管DS1-DS4、电阻R8-R14等组成数码显示电路。本机采用动态扫描显示的方式,用软件对字形码译码。P3.0-P3.5、P3.7口作数码显示七段笔划字形码的输出,P1.3-P1.6口作四个数码管的动态扫描位驱动码输出。这里采用了共阴数码管,由于AT89C2051的P1.3-P1.6口有25mA的下拉电流能力,所以不用三极管就能驱动数码管。R8-R14为P3.0-P3.5、P3.7口的上拉电阻,用以驱动数码管的各字段,当P3的某一端口输出低电平时其对应的字段笔划不点亮,而当其输出高电平时,则对应的上拉电阻即能点亮相应的字段笔划。

    标签: 89C C51 AT 89

    上传时间: 2013-12-31

    上传用户:ming529

  • TEA1504开关电源低功耗控制芯片的应用

    TEA1504开关电源低功耗控制芯片的应用:介绍了Philips 公司开发的Green Chip TM 绿色芯片TEA1504 的内部结构及工作原理,该控制芯片集成了开关电源的PWM 控制、高低频模式转换、栅极驱动和保护等功能,同时上有瞬态响应快,启动电流过冲小,待机功耗低等特点。关键词:开关电源 TEA1504 脉宽调制低功耗1 前言开关电源以其供电效率高,稳压范围大,体积小被越来越多的电子电器设备所采用,在大屏幕电视机、监视器、计算机等电器的待机或备用(stand-by)状态会继续耗电,为此,Philips 公司采用BiCOMS 工艺开发出了被之为Green Chip TM(绿色芯片)的高压开关电源控制芯片。该类集成芯片(IC)的稳压范围为90~276V(AC),能将开关电源待机功耗降至2W 以下,其本身的待机损耗小于100mW,并具有快速和高效的片内启动电流源;在负载功率较低时,它还能自动转换到低频工作模式,从而降低了开关电源的损耗。高水平的集成技术使IC 的外围元件大大减少,以实现开关电源的小型化、高效率和高可靠性。本文介绍的TEA1504 是Green Chip TM 系列IC 中的重要成员之一。

    标签: 1504 TEA 开关电源 低功耗

    上传时间: 2013-12-27

    上传用户:lyy1234

  • 单片机外围线路设计

    当拿到一张CASE单时,首先得确定的是能用什么母体才能实现此功能,然后才能展开对外围硬件电路的设计,因此首先得了解每个母体的基本功能及特点,下面大至的介绍一下本公司常用的IC:单芯片解决方案• SN8P1900 系列–  高精度 16-Bit  模数转换器–  可编程运算放大器 (PGIA)•  信号放大低漂移: 2V•  放大倍数可编程: 1/16/64/128  倍–  升压- 稳压调节器 (Charge-Pump Regulator)•  电源输入: 2.4V ~ 5V•  稳压输出: e.g. 3.8V at SN8P1909–  内置液晶驱动电路 (LCD Driver)–  单芯片解决方案 •  耳温枪  SN8P1909 LQFP 80 Pins• 5000 解析度量测器 SN8P1908 LQFP 64 Pins•  体重计  SN8P1907 SSOP 48 Pins单芯片解决方案• SN8P1820 系列–  精确的12-Bit  模数转换器–  可编程运算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5–  升压- 稳压调节器•  电源输入: 2.4V ~ 5V•  稳压输出: e.g. 3.8V at SN8P1829–  内置可编程运算放大电路–  内置液晶驱动电路 –  单芯片解决方案 •  电子医疗器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流杂讯能力• 标准瞬间电压脉冲群测试 (EFT): IEC 1000-4-4• 杂讯直接灌入芯片电源输入端• 只需添加1颗 2.2F/50V 旁路电容• 测试指标稳超 4000V (欧规)– 高可靠性复位电路保证系统正常运行• 支持外部复位和内部上电复位• 内置1.8V 低电压侦测可靠复位电路• 内置看门狗计时器保证程序跳飞可靠复位– 高抗静电/栓锁效应能力– 芯片工作温度有所提高: -200C ~ 700C     工规芯片温度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T  精简指令级结构• 1T:  一个外部振荡周期执行一条指令•  工作速度可达16 MIPS / 16 MHz Crystal–  工作消耗电流 < 2mA at 1-MIPS/5V–  睡眠模式下消耗电流 < 1A / 5V额外功能• 高速脉宽调制输出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz  at 12 MHz System Clock– 4-Bit PWM up to 375 KHz  at 12 MHz System Clock• 内置高速16 MHz RC振荡器 (SN8P2501A)• 电压变化唤醒功能• 可编程控制沿触发/中断功能– 上升沿 / 下降沿 / 双沿触发• 串行编程接口

    标签: 单片机 线路设计

    上传时间: 2013-10-21

    上传用户:jiahao131