智能天线技术的核心是自适应波束的形成,本文首先根据波束形成技术的不同,介绍了三大类自适应算法,基于来波方向的波束形成,基于参考信号的波束形成和基于信号结构特性的盲自适应算法,着重分析了基于参考信号的波束形成算法,并给出了数字波束形成的基本模型。
上传时间: 2017-09-08
上传用户:hj_18
这里介绍LMS推导步骤和过程,常用的自适应滤波有自适应噪声抵消,自适应谱线增强和陷波等
标签: LMS
上传时间: 2015-12-23
上传用户:bainianhutuwen
1.针对一类参数未知的非线性离散时间动态系统,提出了一种新的基于神经网络的MMAC方法。首先,将系统分为线性部分和非线性部分。针对系统线性部分采用局部化方法逮立多个固定模型覆盖系统的参数范围,在此基础上,建立自适应模型来提高系统性能;针对系统非线性部分建立非线性神经网络预测模型来邏近系统的非线性。然后,针对每个子模型设计相应的擅制器。最后,设计基于误差范数形式的性能指标函数对控制器进行硬切换。仿真结果表明,所提出的MMAC方法与传统的在参数空间均匀分布的MMAC方法相比能显著提高非线性系统的暂态性能。2针对一类具有参数跳变的非线性离散时间动态系统,提出子一种基才聚类方法和神经网络的MMAC方法,首先,采用模糊c均值聚类算法对系统先验数据进行分类处理,再分别对每类数据采用RLS算法建立多个固定模型。在此基础上,建立两个白适应模型来提高系统响应速度和控制品质,建立神经网络预测模型来补偿系统非线性。然后,分别针对相应的子模型设计线性鲁棒自适应控制器和神经网络控制器。最后,采用基于信号有界和测量误差的性能切换指标对控制器进行切换,并证明闭环系统的稳定性。仿真结果表明,所提出的算法能更好地解决非线性系统发生参数跳变问题,使得系统具有良好的控制品质3.针对MMAC方法中的模型库优化问题,考虑系统实际运行数据,提出了种基于相似度准则和设置最大模型数的动态优化模型库方法。该方法能对新数据进行综合考量并判断是否应该将该数据纳入子模型建模,并通过设置最大模型数来确保系统用最少的子模型就能保证系统的控制性能。仿真结果表明,所提出的算法能极大地减少子模型数量且具有较好的控制效果。关键词:非线性系统;多模型方法;自适应控制;模糊聚类;神经网络
标签: 自适应控制
上传时间: 2022-03-11
上传用户:
建模、控制算法研究以及仿真试验都是燃气轮机研制过程中必不可少的环节,本文针对三者展开研究首先,采用容积惯性法代替牛顿-拉普逊法建立三轴燃气轮机非线性动态模型,并考虑变比热、引气与冷却等环节,通过与试车数据比较验证了所建模型具有良好的仿真精度。采用容积惯性法不但提高了模型的实时性,并且动态过程更接近真实燃气轮机运转状态。分析了容积惯性法建模中低转速阶段仿真时出现的参数振荡现象产生的原因,通过增加低转速特性数据消除了参数振荡,并提出了一种基于指数平衡与样条拟合的外推方法来获得低转速特性数据。通过低压压气机特性数据外推计算与分析,证明了该外推方法具有较好的准确性。然后,针对重型燃气轮机非线性强、惯性大和负载多变等特点,提出了一种基于深度信念网络的自适应控制器。该控制器结合了深度信念网络和传统PD控制器,其中深度信念网络作用是在线调整PID参数,而传统PD控制器负责控制量的计算与输出。通过数字仿真,验证了该控制器满足燃气轮机转速控制的要求,并且具有良好的自适应性,在燃气轮机不同工况下,能够对其转速进行准确控制,使得系统快速响应的同时无超调量。最后,针对燃气轮机硬件在环仿真平台的需要,设计了一种能够采集并模拟多种范围电压、电流与频率信号的接口模拟器。搭建了燃气轮机硬件在环控制平台,在试验前对接口模拟器以及控制器进行了标定与平台的实时性验证。在已有的控制器上,完成了基于RIX作系统的多任务嵌入式控制系统开发。通过硬件在环试验,进一步验证了本文设计的控制器具有良好的控制效果与较强的自适应能力关键词:燃气轮机,容积惯性,建模,仿真,自适应控制,深度信念网络,硬件在环
标签: 自适应控制
上传时间: 2022-03-14
上传用户:
自适应天线原理
标签: 天线
上传时间: 2013-07-04
上传用户:eeworm
自适应滤波器原理(第三版)
标签: 自适应滤波器
上传时间: 2013-05-18
上传用户:eeworm
空时自适应信号处理
标签: 信号处理
上传时间: 2013-05-25
上传用户:eeworm
交直流传动系统的自适应控制
上传时间: 2013-06-16
上传用户:eeworm
模糊自适应控制理论及其应用
上传时间: 2013-05-28
上传用户:eeworm
模糊自适应控制理论及其应用
上传时间: 2013-06-20
上传用户:eeworm