RLS自适应算法的MATLAB实现。该程序用于估计一个典型信号产生模型的参数,给出了逼近曲线和误差曲线
标签: 自适应滤波算法
上传时间: 2015-12-09
上传用户:dt98
包含了四旋翼模型参考自适应算法,及系统辨识算法,pid控制算法
上传时间: 2016-01-02
上传用户:fmkkk
IEEE+802.11n中速率、模式及信道的联合自适应算法
标签: IEEE+802.11n中速率、模式及信道的联合自适应算法
上传时间: 2016-03-07
上传用户:天天838
自适应语音增强算法,采用自适应滤波原理,对语音信号进行增强处理
上传时间: 2017-11-14
上传用户:微风拂面
基于matlab的LMS自适应滤波器仿真这是一份非常不错的资料,欢迎下载,希望对您有帮助!
上传时间: 2021-12-24
上传用户:d1997wayne
求解旅行商问题的高效自适应混合蚂蚁算法
标签: 蚂蚁算法
上传时间: 2022-03-12
上传用户:得之我幸78
本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-05-23
上传用户:1101055045
永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-07-03
上传用户:kakuki123
现实生活中的语音不可避免的要受到周围环境的影响,背景噪声例如机械噪声、街头音乐噪音,其他说话者的话音等均会严重地影响语音信号的质量:此外传输系统本身也会产生各种噪声,因此接收端的信号为带噪语音信号。混叠在语音信号中的噪声按类别可分为环境噪声等的加法性噪声及电器线路干扰等的乘法性噪声;按性质可分为平稳噪声和非平稳噪声。 语音增强的根本目的就是净化语音质量。把不需要的噪音减低到最小程度。但是由于噪音的复杂性,很难归纳出一个统一的特征,因此不可能寻求一种算法完全适应于所有的噪音消除,因此语音增强是一个复杂的工程。 有关抗噪声技术的研究以及实际环境下的语音信号处理系统的开发,在国内外已经成为语音信号处理非常重要的研究课题,已经作了大量的研究工作,取得了丰富的研究成果。本文仅对加性噪声下的语音增强技术做了较为仔细的讨论,我们先给出语音信号处理的基本理论,它是语音增强算法研究和实现的理论基础,在此基础总结了自适应信号处理技术的特点以及在语音增强方面的应用。选取工程领域最常用的自适应LMS滤波算法和RLS滤波算法作为研究对象,提出了利用最小均方误差意义下自适应滤波器的输出信号与主通道噪声信号的等效关系,得到滤波器最佳自适应参数的方法,并分析了在平稳和非平稳噪声环境下,L M S滤波器族和R L S滤波器在不同噪音输入下的权系数收敛速度、权系数稳定性、跟踪输入信号的能力和信噪比的改善等特性。 研究了MATLAB语言程序设计和使用MALTLAB对语音算法进行仿真、并输入了多种实际环境下的噪音进行滤波仿真并对仿真的结果进行比较和分析。总结出了LMS、NLMS、SIGN-ERROR-LMS、RLS自适应滤波器在语音滤波方面的特点 和应用情况。 最后在MATLAB仿真的基础上,利用Altera公司的Cyclone2系列FPGA芯片和多种EDA工具,完成了L M S自适应滤波器的FPGA设计。 关键词:语音增强,背景噪音,自适应滤波器,LMS,RLS,FPGA
上传时间: 2013-04-24
上传用户:lijianyu172
智能天线技术是阵列信号处理技术发展的产物,它可以看作是将一组传感器按一定的方式放置在空间的不同位置上而构成的阵列,该传感器阵列将接收到的空间传播信号经过适当的自适应信号处理后,提取所需的信号源和信号的属性...
上传时间: 2013-05-26
上传用户:LYNX