FSM 分两大类:米里型和摩尔型。 组成要素有输入(包括复位),状态(包括当前状态的操作),状态转移条件,状态的输出条件。 设计FSM 的方法和技巧多种多样,但是总结起来有两大类:第一种,将状态转移和状态的操作和判断等写到一个模块(process、block)中。另一种是将状态转移单独写成一个模块,将状态的操作和判断等写到另一个模块中(在Verilog 代码中,相当于使用两个“always” block)。其中较好的方式是后者。其原因 如下: 首先FSM 和其他设计一样,最好使用同步时序方式设计,好处不再累述。而状态机实现后,状态转移是用寄存器实现的,是同步时序部分。状态的转移条件的判断是通过组合逻辑判断实现的,之所以第二种比第一种编码方式合理,就在于第二种编码将同步时序和组合逻辑分别放到不同的程序块(process,block) 中实现。这样做的好处不仅仅是便于阅读、理解、维护,更重要的是利于综合器优化代码,利于用户添加合适的时序约束条件,利于布局布线器实现设计。显式的 FSM 描述方法可以描述任意的FSM(参考Verilog 第四版)P181 有限状态机的说明。两个 always 模块。其中一个是时序模块,一个为组合逻辑。时序模块设计与书上完全一致,表示状态转移,可分为同步与异步复位。
标签: 状态
上传时间: 2013-10-23
上传用户:yupw24
“飞思卡尔”杯的总结
上传时间: 2013-10-15
上传用户:thinode
卡尔曼滤波
上传时间: 2013-11-11
上传用户:woshiayin
飞思卡尔智能车的舵机测试程序 #include <hidef.h> /* common defines and macros */#include <MC9S12XS128.h> /* derivative information */#pragma LINK_INFO DERIVATIVE "mc9s12xs128" void SetBusCLK_16M(void) { CLKSEL=0X00; PLLCTL_PLLON=1; //锁相环电路允许位 SYNR=0x00 | 0x01; //SYNR=1 REFDV=0x80 | 0x01; POSTDIV=0x00; _asm(nop); _asm(nop); while(!(CRGFLG_LOCK==1)); CLKSEL_PLLSEL =1; } void PWM_01(void) { //舵机初始化 PWMCTL_CON01=1; //0和1联合成16位PWM; PWMCAE_CAE1=0; //选择输出模式为左对齐输出模式 PWMCNT01 = 0; //计数器清零; PWMPOL_PPOL1=1; //先输出高电平,计数到DTY时,反转电平 PWMPRCLK = 0X40; //clockA 不分频,clockA=busclock=16MHz;CLK B 16分频:1Mhz PWMSCLA = 0x08; //对clock SA 16分频,pwm clock=clockA/16=1MHz; PWMCLK_PCLK1 = 1; //选择clock SA做时钟源 PWMPER01 = 20000; //周期20ms; 50Hz; PWMDTY01 = 1500; //高电平时间为1.5ms; PWME_PWME1 = 1;
上传时间: 2013-11-04
上传用户:狗日的日子
FSM 分两大类:米里型和摩尔型。 组成要素有输入(包括复位),状态(包括当前状态的操作),状态转移条件,状态的输出条件。 设计FSM 的方法和技巧多种多样,但是总结起来有两大类:第一种,将状态转移和状态的操作和判断等写到一个模块(process、block)中。另一种是将状态转移单独写成一个模块,将状态的操作和判断等写到另一个模块中(在Verilog 代码中,相当于使用两个“always” block)。其中较好的方式是后者。其原因 如下: 首先FSM 和其他设计一样,最好使用同步时序方式设计,好处不再累述。而状态机实现后,状态转移是用寄存器实现的,是同步时序部分。状态的转移条件的判断是通过组合逻辑判断实现的,之所以第二种比第一种编码方式合理,就在于第二种编码将同步时序和组合逻辑分别放到不同的程序块(process,block) 中实现。这样做的好处不仅仅是便于阅读、理解、维护,更重要的是利于综合器优化代码,利于用户添加合适的时序约束条件,利于布局布线器实现设计。显式的 FSM 描述方法可以描述任意的FSM(参考Verilog 第四版)P181 有限状态机的说明。两个 always 模块。其中一个是时序模块,一个为组合逻辑。时序模块设计与书上完全一致,表示状态转移,可分为同步与异步复位。
标签: 状态
上传时间: 2015-01-02
上传用户:aa17807091
舵机的工作原理
上传时间: 2013-11-01
上传用户:zhangchu0807
舵机的原理
上传时间: 2013-11-21
上传用户:hfnishi
采用霍夫变换法对雷达目标进行起始,解决了机动目标的非线性强的问题,得到精确的航迹起始初值信息,并将初值信息作为无迹卡尔曼滤波目标跟踪的初始输入,实现对机动目标的跟踪。较其它的算法,霍夫-无迹卡尔曼滤波具有更高的精度。实验仿真,证明了其有效性。
上传时间: 2014-01-04
上传用户:417313137
文中阐述一种移动机器人SLAM问题的解决方法,首先利用激光测距仪得到环境中障碍物的监测图表,然后增量的构建全局地图。利用扩展卡尔曼滤波器(EKF)创建移动机器人定位计算的有界估量;最后通过仿真和物理实验验证了该方法的正确性。可为解决机器人在未知环境下的地图创建与定位问题提供理论依据,具有实际意义。
上传时间: 2013-10-28
上传用户:jackandlee
USB系统原理及其主从机设计
上传时间: 2013-11-11
上传用户:古谷仁美