虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

基准电压

基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。
  • 高精度曲率校正带隙基准电压源的设计68页

    高精度曲率校正带隙基准电压源的设计68页

    标签: 电压源

    上传时间: 2021-10-17

    上传用户:

  • 德州仪器基准电压源(VREF)应用设计技巧和诀窍

    日常生活的电子产品和子系统变得越来越智能,这就需要其“大脑”(硅芯片)在面对现实环境中多种多样情况时,能够对各种可能最终影响系统行为和性能做出可预测和期望的反应。这时,基准电压源就出现在我们面前了。基准电压源是一种精密的器件,专门设计用来维持恒定的输出电压,即使在环境温度或者电源电压等参数变化的情况下也一样。基准电压源其精度之高,它能用于除数据转换器之外还能用于其他应用场合。你将在本文档中看到其应用的范围表明了,基准电压虽然不是一个新的概念,但它们是系统设计继续向前推进的一个组成部分。本文对基准电压源作了综合的概述,包括基础知识和设计应技巧。第一章重点介绍基准电压源的基本特征。作者探讨了在一定情况下,电源设计人员可能需要从一个拓扑结构中获得某些特性,同时利用另一个拓扑的优点。第二章研究了基准电压源性能和数据转换器的设计原则。第三章也是最后一章,讨论了基准电压源的灵活应用,如低漂移直流基准电压和电流源。

    标签: 基准电压 VREF

    上传时间: 2022-07-11

    上传用户:

  • 一种高电源抑制比的CMOS带隙基准电压源设计

    介绍一种基于CSMC0.5 μm工艺的低温漂高电源抑制比带隙基准电路。本文在原有Banba带隙基准电路的基础上,通过采用共源共栅电流镜结构和引入负反馈环路的方法,大大提高了整体电路的电源抑制比。 Spectre仿真分析结果表明:在-40~100 ℃的温度范围内,输出电压摆动仅为1.7 mV,在低频时达到100 dB以上的电源抑制比(PSRR),整个电路功耗仅仅只有30 μA。可以很好地应用在低功耗高电源抑制比的LDO芯片设计中。

    标签: CMOS 高电源抑制 带隙基准 电压源

    上传时间: 2013-10-27

    上传用户:thesk123

  • LDO稳压器高精度电压基准源的分析与设计

    超低漏失线性稳压器的技术关键,是基准源模块的设计,在对双极型LDO稳压器进行分析的基础上,提出了对其关键模块基准电压源进行高精度的设计的方案。

    标签: LDO 稳压器 电压基准源

    上传时间: 2013-12-07

    上传用户:guojin_0704

  • 计算电压基准的温度系数(tempco)和初始精度:摘要:电压基准(VREF)的主要目标是设立系统精度。例如

    计算电压基准的温度系数(tempco)和初始精度:摘要:电压基准(VREF)的主要目标是设立系统精度。例如,模/数转换器(ADC)根据基准电压设置其满量程输入电平。下文讨论了如何在初始精度和温度系数(tempco)之间进行折中,在保证满足系统精度的前提下拓宽电压基准的选择范围。下面介绍的计算方法可根据给定的初始精度确定温度系数,反之亦然。

    标签: tempco VREF 电压基准 精度

    上传时间: 2013-12-11

    上传用户:bruce5996

  • ICL7135的串行采集方式在单片机电压表中的应用

      ICI7135是4位双积分A/D转换芯片,可以转换输出±20000个数字量,有STB选通控制的BCD码输出,与微机接口十分方便.ICL7135具有精度高(相当于14位A/D转换),价格低的优点.其转换速度与时钟频率相关,每个转换周期均有:自校准(调零),正向积分(被测模拟电压积分),反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10000个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲).故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数.将计数的脉冲个数减10000,即得到对应的模拟量.图1给出了ICL7135时序,由图可见,当BUSY变高时开始正向积分,反向积分到零时BUSY变低,所以BUSY可以用于控制计数器的启动/停止.

    标签: 7135 ICL 串行 中的应用

    上传时间: 2013-11-02

    上传用户:hebanlian

  • 数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率

    数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率,逐次逼近型,基准电压为 5V ● 5V单电源供电 ● 输入模拟信号电压范围为 0~5V ● 有两个可供选择的模拟输入通道 显示: 使用三个数码管。 显示范围: 0.00 - 5.10 (单位:V) 连接方式: AD_CLK → P1.0 AD_DAT → P1.1 AD_CS → P3.4 模拟输入 → CH0 (AD_DAT = DO + DI) ADC0832输出最大转换值=FFH (255) 设定最大测量值=5.1V 255X=5.1 X=0.02 即先乘2再除以100 (小数点放在第三位数码管)

    标签: 0832 ADC 8位 数字电压表

    上传时间: 2015-06-18

    上传用户:fandeshun

  • 数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率

    数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率,逐次逼近型,基准电压为 5V ● 5V单电源供电 ● 输入模拟信号电压范围为 0~5V ● 有两个可供选择的模拟输入通道 显示: 使用三个数码管。 显示范围: 0.00 - 5.10 (单位:V) 连接方式: AD_CLK → P1.0 AD_DAT → P1.1 AD_CS → P3.4 模拟输入 → CH0 (AD_DAT = DO + DI) ADC0832输出最大转换值=FFH (255) 设定最大测量值=5.1V 255X=5.1 X=0.02 即先乘2再除以100 (小数点放在第三位数码管)

    标签: 0832 ADC 8位 数字电压表

    上传时间: 2016-06-21

    上传用户:zhangliming420

  • 数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率

    数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率,逐次逼近型,基准电压为 5V ● 5V单电源供电 ● 输入模拟信号电压范围为 0~5V ● 有两个可供选择的模拟输入通道 显示: 使用三个数码管。 显示范围: 0.00 - 5.10 (单位:V) 连接方式: AD_CLK → P1.0 AD_DAT → P1.1 AD_CS → P3.4 模拟输入 → CH0 (AD_DAT = DO + DI) ADC0832输出最大转换值=FFH (255) 设定最大测量值=5.1V 255X=5.1 X=0.02 即先乘2再除以100 (小数点放在第三位数码管)

    标签: 0832 ADC 8位 数字电压表

    上传时间: 2016-06-21

    上传用户:懒龙1988

  • 数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率

    数字电压表 AD芯片: 采用8位串行A/D转换器ADC0832。 ● 8位分辨率,逐次逼近型,基准电压为 5V ● 5V单电源供电 ● 输入模拟信号电压范围为 0~5V ● 有两个可供选择的模拟输入通道 显示: 使用P0口的数码管显示转换值。 显示范围: 0.00 - 5.10 (单位:V) 连接方式: AD_CLK → P1.0 AD_DAT → P1.1 AD_CS → P3.4 模拟输入 → CH0 (AD_DAT = DO + DI) ADC0832输出最大转换值=FFH (255) 设定最大测量值=5.1V 255X=5.1 X=0.02 即先乘2再除以100 (小数点放在第三位数码管)

    标签: 0832 ADC 8位 数字电压表

    上传时间: 2013-12-05

    上传用户:dreamboy36