RBF神经网络在分类问题中得到了广泛的应用,尤其是模式识别的问题。许多模式识别实验证明,RBF具有更有效的非线性逼近能力,并且RBF神经网络的学习速度较其他网络快。本文在具有复杂控制规律的S函数构造方法的基础上,给出了基于MATLAB语言的RBF神经网络PID控制器,及该模型的一非线性对象的仿真结果。
上传时间: 2016-05-19
上传用户:子夜青衫
基于FPGA的神经网络硬件实现中的关键问题研究,适合用fpga研究神经网络的工程人员参考
上传时间: 2013-08-07
上传用户:13215175592
为了提高电力系统负荷预测的精度与速度的需求,提出使用交替梯度算法改进径向基函数(RBF) 神经网络, 对天津市电网进行负荷预测。改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度。 仿真结果表明该算法具有可行性。
上传时间: 2013-10-31
上传用户:waixingren
小麦在储藏阶段由于各种灾害导致损失巨大,并降低了面粉质量,及时检测并分离小麦的受损颗粒迫在眉睫。文章以提取4类小麦碰撞声信号为基础,使用数字信号处理方法对小麦完好粒、虫害粒、霉变粒及发芽粒的碰撞声信号提取有效特征,最后利用BP神经网络进行分类,对于3类小麦类型的识别取得了较好的识别率。应用结果表明BP神经网络能够较好地实现区分受损小麦颗粒与完好小麦颗粒。
上传时间: 2014-12-29
上传用户:lxm
为使设计人员在大型客机设计阶段便可对其制造成本有较为准确的把握,针对大型客机制造成本,采用RBF神经网络理论建立了一种分析模型,并给出建模流程。利用Matlab神经网络工具箱进行模拟仿真,对所建立大型客机制造成本分析的神经网络模型进行了验证,最后进行误差分析。仿真结果表明,所建RBF神经网络对大型客机成本的估算是有效的,且该方法精度较高,实用性较强。
上传时间: 2013-11-19
上传用户:wpwpwlxwlx
文中将BP神经网络的原理应用于参数辨识过程,结合传统的 PID控制算法,形成一种改进型BP神经网络PID控制算法。该算法利用BP神经网络建立系统参数模型,能够跟踪被控对象的变化,取得较高的辨识精度。针对BP神经网络对权系初始值敏感的缺点,优化BP神经网络的初始权系数。通过BP算法修正BP网络自身权系数,实现PID参数的在线调整。仿真结果显示了该算法收敛速度快、精度高、鲁棒性强、稳定性好,表明了该算法的可行性与有效性。
上传时间: 2013-10-08
上传用户:cxl274287265
为了在一定的温度和压力下有效改善传感器的非线性及温度变化引起的误差输出特性,提出了一种人工神经网络算法对其实现软件补偿. 它包含4 个权值的调整,分别代表输出信号的一次项,二次项以及温度的一次项,二次项系数,经过迭代以后获得一个最佳输出公式. 该公式既能够满足样本值,也能够满足非样本值,并最终可校验神经网络迭代结果的正确性.
上传时间: 2013-11-05
上传用户:yuanwenjiao
指出了超声波在测距应用中的局限性, 并给出解决方案。着重从新的角度补偿超声传感器的误差, 提出了用BP前馈神经网络补偿超声波声速受温度、湿度变化而引起的误差。
上传时间: 2014-04-24
上传用户:erkuizhang
落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路。
上传时间: 2015-03-12
上传用户:熊少锋
本文将BP神经网络应用于汽车车牌的自动识别,在车牌图像进行预处理后的基础上,重点讨论了用BP神经网络方法对车牌照字符的识别。并附有部分识别代码。
上传时间: 2015-04-29
上传用户:yulg