单片机c语言学习和单片机制作资料: 函数的使用和熟悉 实例3:用单片机控制第一个灯亮 实例4:用单片机控制一个灯闪烁:认识单片机的工作频率 实例5:将 P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能 实例6:使用P3口流水点亮8位LED 实例7:通过对P3口地址的操作流水点亮8位LED 实例8:用不同数据类型控制灯闪烁时间 实例9:用P0口、P1 口分别显示加法和减法运算结果 实例10:用P0、P1口显示乘法运算结果 实例11:用P1、P0口显示除法运算结果 实例12:用自增运算控制P0口8位LED流水花样 实例13:用P0口显示逻辑"与"运算结果 实例14:用P0口显示条件运算结果 实例15:用P0口显示按位"异或"运算结果 实例16:用P0显示左移运算结果 实例17:"万能逻辑电路"实验 实例18:用右移运算流水点亮P1口8位LED 实例19:用if语句控制P0口8位LED的流水方向 实例20:用swtich语句的控制P0口8位LED的点亮状态 实例21:用for语句控制蜂鸣器鸣笛次数 实例22:用while语句控制LED 实例23:用do-while语句控制P0口8位LED流水点亮 实例24:用字符型数组控制P0口8位LED流水点亮 实例25: 用P0口显示字符串常量 实例26:用P0 口显示指针运算结果 实例27:用指针数组控制P0口8位LED流水点亮 实例28:用数组的指针控制P0 口8 位LED流水点亮 实例29:用P0 、P1口显示整型函数返回值 实例30:用有参函数控制P0口8位LED流水速度 实例31:用数组作函数参数控制流水花样 实例32:用指针作函数参数控制P0口8位LED流水点亮 实例33:用函数型指针控制P1口灯花样 实例34:用指针数组作为函数的参数显示多个字符串
上传时间: 2013-10-21
上传用户:llandlu
摘要 本研究计划之目的,在整合应用以ARM为基础的嵌入式多媒体实时操作系统于H.264/MPEG-4多媒体上。由于H.264是一种因应实时系统(RTOS)所设计的可扩展性串流传输(scalability stream media communication)的编码技术。H.264主要架构于细细粒可扩展(Fine Granula Scalability,FGS)的压缩编码机制。细粒度可扩展压缩编码技术是最新MPEG-4串流式传输标准,能依频寛的差异来调整传输的方式。细粒度扩展缩编码技术以编入可选择性的增强层(enhanced layers)于码中,来提高影像传输的质量。本计划主要在于设计一种简单有效的实时阶层可扩展的影像传输系统。在增强层编码及H.264的基本层(base layer)编码上使用渐进的细粒度可扩展编码(Progressive Fine Granularity Scalable,PFGS)能直接使用H.264的格式特色来实现FGS。同时加入了LB-LLF(Layer-Based Least-Laxity-Fir stscheduling algorithm)的排程算法,来增 进网路传输影像的质量。由实验结果显示本系统在串流影像质量PSNR值上确有较佳的效能。
上传时间: 2014-12-26
上传用户:mpquest
前言 通用单片机,其实泛指微控器,对于芯片提供厂商,又指应用于通用领域的单片机产品;广泛应用于家电产品、工业控制产品、仪器仪表设备、智能控制器等当中,渗透在人们的日常生活、生产活动当中。按照通用单片机的数据总线位数划分,也分为4位、8位、16位以及32位通用单片机/微控制器,其中又以8位通用单片机在通用领域应用的市场当中,占据最大的份额;而且随着需求的增涨,全球8位通用单片机的出货量还在攀升当中。在8位通用单片机的供货商中,有很多世界知名的芯片厂商,都在给广大用户提供各种规格的通用单片机产品,应用于各种领域;凌阳科技(Sunplus Technology Co.,Ltd.)作为全球知名的芯片设计公司,在通用单片机产品上,提供了SPMC系列通用单片机。
上传时间: 2013-11-02
上传用户:gtzj
该系统以单片机为控制核心,结合双二阶环路滤波器的基本原理,使其同时具备低通、高通、带通、带阻滤波器的功能,利用DAC等效为可变电阻,实现了滤波器参数的程控。该系统可通过键盘设置滤波器的种类、截止频率和Q值,低通、高通滤波器截止频率以及带通、带阻滤波器中心频率可预置范围为100 Hz~50 kHz,Q值范围为0.5~5。系统采用矩阵键盘和LCD液晶显示,人机交互界面友好。
标签: 程控滤波器
上传时间: 2013-11-29
上传用户:ajaxmoon
LM3S系列单片机主要有3种工作模式:运行模式(Run-Mode)、睡眠模式(Sleep-Mode)、深度睡眠模式(Deep-Sleep-Mode)。某些型号还具有单独的极为省电的冬眠模块(Hibernation Module)。而对各个模式下的外设时钟选通以及系统时钟源的控制主要由表 2.1中的寄存器来完成。 运行模式是正常的工作模式,处理器内核将积极地执行代码。在睡眠模式下,系统时钟不变,但处理器内核不再执行代码(内核因不需要时钟而省电)。在深度睡眠模式下,系统时钟可变,处理器内核同样也不再执行代码。深度睡眠模式比睡眠模式更为省电。有关这3种工作模式的具体区别请参见表 2.2的描述。调用函数SysCtlSleep( )可使处理器立即进入睡眠模式,而调用函数SysCtlDeepSleep( )可使处理器立即进入深度睡眠模式。任一中断都可以将处理器从睡眠或深度睡眠模式唤醒,并使处理器恢复到睡眠前的运行状态。因此在进入睡眠或深度睡眠之前,必须配置某个片内外设的中断并允许其在睡眠或深度睡眠模式下继续工作,如果不这样,则只有复位或重新上电才能结束睡眠或深度睡眠状态。
上传时间: 2013-11-08
上传用户:ArmKing88
PCF8579是一款低功耗的CMOS LCD列驱动器,以1:8,1:16,1:24或1:32的复用率驱动点阵图形显示器。该器件含40个输出脚,可驱动一个32行复用的32×40点阵LCD。最多可级联16个PCF8579,同一I2C总线上最多可挂载32个器件(使用2个从机地址)。PCF8579最适合与PCF8578 LCD行/列驱动器配合使用,这两个器件共同形成了通用LCD点阵驱动芯片组,可以驱动显示多达40960个点。PCF8579与大多数微控制器兼容并通过一个双线I2C总线进行通信。由于部分VDD可以关断,SCL和SDA引脚的ESD保护系统并未通过二极管连接到VDD。器件具有自增寻址的显示RAM和显示区域切换等功能,使应用系统的通信量减到最低。
上传时间: 2013-10-29
上传用户:dalidala
关于PCB封装的资料收集整理. 大的来说,元件有插装和贴装.零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。是纯粹的空间概念.因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。晶体管是我们常用的的元件之一,在DEVICE。LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。还有一个就是电阻,在DEVICE 库中,它也是简单地把它们称为RES1 和RES2,不管它是100Ω 还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W 和甚至1/2W 的电阻,都可以用AXIAL0.3 元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。现将常用的元件封装整理如下:电阻类及无极性双端元件:AXIAL0.3-AXIAL1.0无极性电容:RAD0.1-RAD0.4有极性电容:RB.2/.4-RB.5/1.0二极管:DIODE0.4及DIODE0.7石英晶体振荡器:XTAL1晶体管、FET、UJT:TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2):VR1-VR5这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3 可拆成AXIAL 和0.3,AXIAL 翻译成中文就是轴状的,0.3 则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6 等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。SIPxx 就是单排的封装。等等。值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。例如,对于TO-92B之类的包装,通常是1 脚为E(发射极),而2 脚有可能是B 极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS 管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。Q1-B,在PCB 里,加载这种网络表的时候,就会找不到节点(对不上)。在可变电阻
上传时间: 2013-11-03
上传用户:daguogai
MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。 《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录 第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?
上传时间: 2014-05-07
上传用户:lwq11
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
MCP定时器产生中心对称PWM输出:PWM波是一种脉宽可调的脉冲波,用于交、直流电机的电压控制。PWM一共有两种调整方法,一是定频调宽、另一种是定宽调频。其中定频调宽是种最常见的脉宽调制方式,它使脉冲波的频率保持不变,只调整脉冲宽度。同时定频调宽的PWM波形也分为两种,一种是单边的PWM,另一种是中心对称的双边PWM。中心对称的PWM主要应用在需要对称PWM波形的场合,如半桥、全桥的双极性驱动等。中心对称的PWM的生成原理如图1-2所示:定时计数器工作在连续增减计数方式,在计数初值设置为0且比较值小于周期值的条件下,当增计数过程中计数值和比较值匹配时置位输出,而在周期匹配时会改计数方向为减计数,当减计数过程中计数值和比较值匹配时复位输出,当减计数到零时会改计数方向为增计数,开始下一个循环。因此中心对称的PWM的周期为设定周期的二倍,占空比为:%100))((×−TPRNTPR(N为比较匹配数据,TPR为周期寄存器的值)。比较值的改变会影响PWM的两边的波形,并且两边相对高电平的中心对称,这便是中心对称双边PWM波形的特点。如果比较值为零,那么PWM将一直输出高电平;如比较值大于等于周期值,则PWM会一直输出低电平,占空比为0。
上传时间: 2013-11-13
上传用户:sammi