摘要:为提高太阳能的利用率,以AT89S52单片机为控制核心,采取极轴式跟踪方式,设计了一套以视日运动轨迹跟踪为主、光电跟踪进行跟踪校正的智能型双精度太阳跟踪系统,该系统通过采集时钟芯片信息计算当前太阳位置,实现视日运动轨迹跟踪;同时利用光电传感器采集的光强偏差控制步进电机,实现光电跟踪,校正轨迹偏差,保证聚光板与太阳光相垂直。试验表明,该太阳跟踪系统能在不同天气状况下对太阳进行较准确跟踪,能量接收效率提高20% 以上,达到了充分利用太阳能的目的。
上传时间: 2014-12-01
上传用户:dysyase
轮式移动机器人是机器人研究领域的一项重要内容.它集机械、电子、检测技术与智能控制于一体。在各种移动机构中,轮式移动机构最为常见。轮式移动机构之所以得到广泛的应用。主要是因为容易控制其移动速度和移动方向。因此.有必要研制一套完整的轮式机器人系统。并进行相应的运动规划和控制算法研究。笔者设计和开发了基于51型单片机的自动巡线轮式机器人系统。
上传时间: 2014-08-22
上传用户:dljwq
家居智能机器人的核心控制部分采用双CPU体系,主从CPU分布计算,保证了实时性要求。主机以SPCE061A单片机为核心,外扩了嵌入式语音识别应答模块、智能报警及灭火模块、电机驱动控制模块等功能模块。从机作为专门的定位处理芯片,实现系统定位的功能,同时将处理得到的信息通过串口通信传递给上位机。超声波传感器、红外传感器、霍尔传感器、接触传感器等多传感器信息融合技术的采用,保证了智能机器人系统信息处理的快速性和正确性。
上传时间: 2014-12-01
上传用户:康郎
随着 微 电 子技术的飞速发展,电子产品越来越微型化,集成化,自动化,低廉化,进而推动着其它许多产业的发展。特别进人21世纪以来,生物技术与电子技术的结合,成为高科技领域的研究热点。199()年由瑞士的Manz和Widmer首先提出的“微全分析系统”〔’〕(microto talan alysissy stems,即ptTAS),通俗地称为“建在芯片上的实验室”(Lab on a chip)或简称芯片实验室(Lab chip),主要组成部分为电泳芯片,同时是进样,分离和检测为一体的微型装置,其在电泳实验中的高效检测性能为生物化学分析仪器发展提供了一种借鉴。p.TAS广泛应用于生物医学、环境检测、食品卫生、科学以及国防等众多领域。目前 应 用 的大多为多通道的毛细管电泳芯片,这也是芯片发展的一个必然趋势。这不仅对电泳芯片本身的设计和制作提出了更高的要求,也对传感器和数据处理技术提出了新的挑战。考虑成本,集成度,控制能力以及可靠性方面的因素,本系统采用单片机作为实时数据处理、控制以及通讯的硬件平台。如果系统中既有实时的通信任务,同时又有其他实时任务,采用一个廉价的单片机,资源会比较紧张,不仅实现困难,结构复杂,而且效果可能不满意。而采用高性能的处理器,又浪费了其有效资源,所以本系统采用两个MCU协同工作,以并行/分布式多机的思想,构成了电泳芯 片核心的双单片机系统结构。微全 分 析 系 统 进行的多项实时任务,可以划分为以下 几个模块:①采集模块。负责对外围检验设备进行控 制以及对传送过来的信号进行采集和分析;②交互模 块。通过液晶显示,键盘扫描,以及打印等实现实验人 员对前端采集电路的交互操作;③双单片机控制和通 信模块。协调双单片机之间的数据传输和指令传输 ;④网络传输模块。其中一个单片机通过以太网发送接 收数据到上位机。本文提出一种实时多任务的双单片 机控制和通信系统[31的设计,一个MCU基于TCP /IP网络模块的实现。
上传时间: 2013-11-15
上传用户:wangdean1101
近年来,蛇形机器人作为一类有重要应用前景的仿生机器人受到了国内的广泛关注,并取得了很多进展。蛇形机器人跟传统的两足式机器人或者履带机器人比较,具有更好的运动稳定性和环境适应能力。蛇形机器人是一种新型的仿生机器人,与传统的轮式或两足步行式机器人不同之处在于,它实现了像蛇一样的基本运动模式。本文提出了一种类似正弦波形的7关节三动杆蛇形机器人结构模型,并对该机器人的基本步态进行了分析研究,对其前进的方式进行了数学建模设计,为该蛇形机器人在具体设计制造前提供了理论分析基础。
上传时间: 2013-11-04
上传用户:lilei900512
本沐足管理系统可用于各沐足管理,系统功能齐全,小型酒店服务台管理
标签: 管理系统
上传时间: 2016-04-07
上传用户:franktu
倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强耦合特性的不稳定系统。在控制过程中,它能有效地反映诸如稳定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。迄今人们己经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定倒立摆系统的最初研究开始于二十世纪五十年代,麻省理工大学电机工程系设计出单级倒立摆系统这个实验设备。后来在此基础上,人们又进行拓展,产生了各式各样的倒立摆:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆倒立摆的级数有一级、二级、三级、四级乃至多级:倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统已成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统:火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡。由于倒立摆系统与双足机器人、火箭飞行控制有很大相似性,因此对倒立摆控制机理的研究具有重要的理论和实践意义。而就这两方面而言,从目前的研究情况来看,大部分研究成果又都集中在第面即倒立摆系统的稳定控制的研究早在上个世纪五十年代,国外就开始了倒立摆的研究,我国学者也从80年代初开始倒立摆系统的研究。1966年 Schaefer和 Cannon应用bang-bang控制理论,将一个曲轴稳定于倒置位置,实现了单级倒立摆的稳定控制,在60年代后期,作为一个典型的不稳定严重非线性证例,倒立摆的概念被提出,并将其用于检验控制方法对不稳定、非线性和快速性系统的控制能力,受到世界各国许多科学家的重视,寻找不同的控制方法实现对倒立摆的控制。目前,倒立摆的控制方法可分如下几类
上传时间: 2022-04-05
上传用户:
足球机器人视觉系统的研究.PDF 2.9M2020-03-03 16:51 三菱机器人进修教程.pdf 5.5M2020-03-03 16:51 简易机器人制作(看完就会).pdf 1.7M2020-03-03 16:51 机器视觉系统在机械制造中的应用.pdf 415KB2020-03-03 16:51 机器视觉测量技术.pdf 2.8M2020-03-03 16:51 机器人中文简易教材.pdf 1.3M2020-03-03 16:51 机器人制作宝典.pdf 6.6M2020-03-03 16:51 机器人学(张福学).pdf 17.8M2020-03-03 16:51 机器人学(付京逊).pdf 15.4M2020-03-03 16:51 机器人视觉技术.pdf 21.3M2020-03-03 16:51 机器人控制入门.pdf 2.4M2020-03-03 16:51 机器人控制技术.pdf 4.8M2020-03-03 16:51 机器人技术及其应用.pdf 19.2M2020-03-03 16:51 机器人和机械手控制系统.pdf 3.5M2020-03-03 16:51 机器人的创意设计与实践.pdf 6.6M2020-03-03 16:51 机器人C语言 机电一体化接口.pdf 8.7M2020-03-03 16:51 机器人-毕业设计.pdf 778KB2020-03-03 16:51 红外遥控六足爬虫机器人设计.pdf 566KB2020-03-03 16:51 工业机械手设计基础.pdf 12.8M2020-03-03 16:51 工业机械手设计.pdf 6M2020-03-03 16:51 工业机器人培训教材.pdf 5.3M2020-03-03 16:51 工业机器人的操作机设计.pdf 7.4M2020-03-03 16:51 高级机器人手册.pdf 23.1M2020-03-03 16:51 NX100使用说明书.pdf 16.8M2020-03-03 16:51 NX100操作要领书.pdf
上传时间: 2013-04-15
上传用户:eeworm
足球机器人视觉系统的研究.PDF 2.9M2020-03-03 16:51 三菱机器人进修教程.pdf 5.5M2020-03-03 16:51 简易机器人制作(看完就会).pdf 1.7M2020-03-03 16:51 机器视觉系统在机械制造中的应用.pdf 415KB2020-03-03 16:51 机器视觉测量技术.pdf 2.8M2020-03-03 16:51 机器人中文简易教材.pdf 1.3M2020-03-03 16:51 机器人制作宝典.pdf 6.6M2020-03-03 16:51 机器人学(张福学).pdf 17.8M2020-03-03 16:51 机器人学(付京逊).pdf 15.4M2020-03-03 16:51 机器人视觉技术.pdf 21.3M2020-03-03 16:51 机器人控制入门.pdf 2.4M2020-03-03 16:51 机器人控制技术.pdf 4.8M2020-03-03 16:51 机器人技术及其应用.pdf 19.2M2020-03-03 16:51 机器人和机械手控制系统.pdf 3.5M2020-03-03 16:51 机器人的创意设计与实践.pdf 6.6M2020-03-03 16:51 机器人C语言 机电一体化接口.pdf 8.7M2020-03-03 16:51 机器人-毕业设计.pdf 778KB2020-03-03 16:51 红外遥控六足爬虫机器人设计.pdf 566KB2020-03-03 16:51 工业机械手设计基础.pdf 12.8M2020-03-03 16:51 工业机械手设计.pdf 6M2020-03-03 16:51 工业机器人培训教材.pdf 5.3M2020-03-03 16:51 工业机器人的操作机设计.pdf 7.4M2020-03-03 16:51 高级机器人手册.pdf 23.1M2020-03-03 16:51 NX100使用说明书.pdf 16.8M2020-03-03 16:51 NX100操作要领书.pdf 22.6M2020-03-03 16:51
上传时间: 2013-06-19
上传用户:eeworm
随着电力电子技术、微处理器技术以及新的电机控制技术的发展,交流调速性能日益提高。变频调速技术的出现使交流调速系统有取代直流调速系统的趋势。但是国民经济的快速发展要求交流变频调速系统具有更高的调速精度、更大的调速范围和更快的响应速度,一般的通用变频器已经不能满足工业应用的需求,而交流电机矢量控制调速系统能够很好的满足这个要求。矢量控制(Field Oriented Control),能够实现交流电机电磁转矩的快速控制,本文对三相交流异步电机的矢量控制系统进行了研究和分析,以高性能数字信号处理器为硬件平台设计了基于DSP的三相交流异步电机的矢量控制系统,并分析了逆变器死区效应的产生,实现了逆变器死区的补偿。 本文介绍了交流调速及其相关技术的发展,变频调速的方案以及国内外对矢量控制的研究状况。以三相交流异步电机在三相静止坐标系下的数学模型为基础,通过Clarke变换和Parke变换得到三相交流异步电机在两相旋转坐标系下的数学模型,并利用转子磁场定向的方法,对该模型进行分析,设计了转子磁链观测器,以实现交流电机电流量的有效解耦,得到定子电流的转矩分量和励磁分量。仿照直流电机的控制方法,设计了矢量控制算法的电流与速度双闭环控制系统。设计了以TMS320LF2407A为主控制器的硬件平台,在此基础上实现了矢量控制算法,论述了电压空间矢量调制(SVPWM)的原理和方法,并对其进行了改进。最后对逆变器的死区进行了补偿。 实验表明基于转子磁场定向的矢量控制(FOC)系统,结构简单,电流解耦方便,动态性能好,精度较高,能够基本满足现代交流电机控制系统的转矩和速度要求。
上传时间: 2013-05-24
上传用户:李彦东