目前开关电源以小型、轻量和高效率的特点被广泛应用于各类电子设备中,但开关电源输出的直流上面会叠加较大的纹波,而虽然线性电源有体积庞大,发热和能效较低等缺点,但是线性电源技术成熟,可以达到很高的稳定度,没有高频波纹等干扰,因此对于电磁干扰和电源纯净性有较高要求的地方选用线性电源更好,比如一些高档音响,高精度测试仪器仪表等,因此广泛应用于一些科研院所、实验室、学校、工矿企业、电解、电镀、充电设备等。
上传时间: 2013-10-21
上传用户:ZZJ886
为了解决计算机系统电源保持时间问题,确保输出电压在一段时间稳定在一定范围内。确保计算机在出现输入故障是有足够的时间备份数据或者切换到不间断电源(UPS)下工作。为此提出了一种复合型单开关PFC预调器、并根据需求进行了设计,该设计可以减小储能电容的容量,使输出电流谐波满足IEC1000-302的要求。
上传时间: 2013-10-21
上传用户:范缜东苑
FT833A11-10V0.3A驱动器是一款无需变压器绕组检测和供电LED驱动器,它可以在85Vac至264Vac的 输入电压范围内为LED灯串提供额定电压3~10Vdc、额定电流0.3A的驱动。 本驱动使用的是FMD最新推出的FT833电源管理IC,它无需变压器辅助,可进一步降低整个驱动的成本。 在成本降低同时,还能保持较高的电流精度与调整率。 本驱动提供全面的保护功能,包括环路和输出短路保护并自动重新启动。输出过压限制可避免在负载断 开时可能对电源造成的损坏。开关周期限流保护功能能让LED系统工作更加安全可靠。 此设计主要目标是小体积,低成本和高效率。本驱动可轻松放进市面上绝大多数的LED灯杯内,并将工 作时温升保持在可接受范围以内。
上传时间: 2013-10-14
上传用户:yangzhiwei
光電二極管可分為兩類:具高電容 (30pF 至 3000pF)的大面積光電二極管和具相對較低電容 (10pF 或更小)的較小面積光電二極管
上传时间: 2013-11-21
上传用户:firstbyte
LTC®3838 是一款双输出、两相降压型控制器,其采用一种受控恒定导通时间、谷值电流模式架构,可提供快速负载阶跃响应、高开关频率和低占空比能力。开关频率范围为 200kHz 至 2MHz,其锁相环可在稳态操作期间保持固定频率,并可同步至一个外部时钟
上传时间: 2013-11-09
上传用户:uuuuuuu
模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率 负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 3. 综合调整率 综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯 输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。 一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。 同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率 电源供应器的输入功率之定义为以下之公式: True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。 电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载 一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间 启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。 保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。 8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等
上传时间: 2013-10-22
上传用户:zouxinwang
利用RC高通电路的思想,针对LDO提出了一种新的瞬态增强电路结构。该电路设计有效地加快了LDO的瞬态响应速度,而且瞬态增强电路工作的过程中,系统的功耗并没有增加。此LDO芯片设计采用SMIC公司的0.18 μm CMOS混合信号工艺。仿真结果表明:整个LDO是静态电流为3.2 μA;相位裕度保持在90.19°以上;在电源电压为1.8 V,输出电压为1.3 V的情况下,当负载电流在10 ns内由100 mA降到50 mA时,其建立时间由原来的和28 μs减少到8 μs;而在负载电流为100 mA的条件下,电源电压在10 ns内,由1.8 V跳变到2.3 V时,输出电压的建立时间由47 μs降低为15 μs。
上传时间: 2013-12-20
上传用户:niumeng16
文中首先介绍了太阳能LED路灯系统的组成,及各组成部分的工作原理。然后详细讨论了用STC90C52单片机实现的太阳能LED路灯控制器的设计,包括用并联式三端稳压管TL431芯片实现的蓄电池充电控制电路、用场效应管实现的负载输出控制电路、用光敏电阻实现的光控电路、用运算放大器实现的检测电路的硬件电路设计和系统软件的实现。
上传时间: 2013-11-18
上传用户:windgate
基于SMIC0.35 μm的CMOS工艺,设计了一种高电源抑制比,同时可在全工艺角下的得到低温漂的带隙基准电路。首先采用一个具有高电源抑制比的基准电压,通过电压放大器放大得到稳定的电压,以提供给带隙核心电路作为供电电源,从而提高了电源抑制比。另外,将电路中的关键电阻设置为可调电阻,从而可以改变正温度电压的系数,以适应不同工艺下负温度系数的变化,最终得到在全工艺角下低温漂的基准电压。Cadence virtuoso仿真表明:在27 ℃下,10 Hz时电源抑制比(PSRR)-109 dB,10 kHz时(PSRR)达到-64 dB;在4 V电源电压下,在-40~80 ℃范围内的不同工艺角下,温度系数均可达到5.6×10-6 V/℃以下。
上传时间: 2014-12-03
上传用户:88mao
随着通信信道的复杂度和可靠性不断增加,人们对于电信系统的要求和期望也不断提高。这些通信系统高度依赖于高性能、高时钟频率和数据转换器器 件,而这些器件的性能又非常依赖于系统电源轨的质量。当使用一个高噪声电源供电时,时钟或者转换器 IC 无法达到最高性能。仅仅只是少量的电源噪声,便会对性能产生极大的负面影响。本文将对一种基本 LDO 拓扑进行仔细研究,找出其主要噪声源,并给出最小化其输出噪声的一些方法。 表明电源品质的一个关键参数是其噪声输出,它常见的参考值为 RMS 噪声测量或者频谱噪声密度。为了获得最低 RMS 噪声或者最佳频谱噪声特性,线性电压稳压器(例如:低压降电压稳压器,LDO),始终比开关式稳压器有优势。这让其成为噪声敏感型应用的选择。 基本 LDO 拓扑 一个简单的线性电压稳压器包含一个基本控制环路,其负反馈与内部参考比较,以提供恒定电压—与输入电压、温度或者负载电流的变化或者扰动无关。 图 1 显示了一个 LDO 稳压器的基本结构图。红色箭头表示负反馈信号通路。输出电压 VOUT 通过反馈电阻 R1 和 R2 分压,以提供反馈电压 VFB。VFB 与误差放大器负输入端的参考电压 VREF 比较,提供栅极驱动电压 VGATE。最后,误差信号驱动输出晶体管 NFET,以对 VOUT 进行调节。 图 1 LDO 负反馈环路 简单噪声分析以图 2 作为开始。蓝色箭头表示由常见放大器差异代表的环路子集(电压跟随器或者功率缓冲器)。这种电压跟随器电路迫使 VOUT 跟随 VREF。VFB 为误差信号,其参考 VREF。在稳定状态下,VOUT 大于 VREF,其如方程式 1 所描述:
上传时间: 2013-11-11
上传用户:jiwy