虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

低电平测量

  • P87LPC767 OTP 单片机原理

    P87LPC767 OTP 单片机原理 P87LPC767 是20 脚封装的单片机适合于许多要求高集成度低成本的场合可以满足许多方面的性能要求作为Philips 小型封装系列中的一员P87LPC767 提供高速和低速的晶振和RC 振荡方式可编程选择具有较宽的操作电压范围可编程I/O 口线输出模式选择可选择施密特触发输入LED 驱动输出有内部看门狗定时器P87LPC767 采用80C51 加速处理器结构指令执行速度是标准80C51 MCU 的两倍特性􀂑 操作频率为20MHz 时除乘法和除法指令外加速80C51 指令执行时间为300600ns VDD=4.5 5.5V 时时钟频率可达20MHz VDD=2.7 4.5V 时时钟频率最大为10MHz􀂑 4 通道多路8 位A/D 转换器在振荡器频率fosc=20MHz 时转换时间为9.3μs􀂑 用于数字功能时操作电压范围为2.7 6.0V􀂑 4K 字节OTP 程序存储器128 字节的RAM 32Byte 用户代码区可用来存放序列码及设置参数􀂑 2 个16 位定时/计数器每一个定时器均可设置为溢出时触发相应端口输出􀂑 内含 2 个模拟比较器􀂑 全双工通用异步接收/发送器UART 及I2C 通信接口􀂑 八个键盘中断输入另加2 路外部中断输入􀂑 4 个中断优先级􀂑 看门狗定时器利用片内独立振荡器,无需外接元件,看门狗定时器溢出时间有8 种选择􀂑 低电平复位使用片内上电复位时不需要外接元件􀂑 低电压复位选择预设的两种电压之一复位可在掉电时使系统安全关闭也可将其设置为一个中断源􀂑 振荡器失效检测看门狗定时器具有独立的片内振荡器因此它可用于振荡器的失效检测􀂑 可配置的片内振荡器及其频率范围和RC 振荡器选项(用户通过对EPROM 位编程选择) 选择RC 振荡器时不需外接振荡器件􀂑 可编程 I/O 口输出模式准双向口,开漏输出,上拉和只有输入功能可选择施密特触发输入􀂑 所有口线均有20mA 的驱动能力􀂑 可控制口线输出转换速度以降低EMI,输出最小上升时间约为10ns􀂑 最少 15 个I/O 口,选择片内振荡和片内复位时可多达18 个I/O 口􀂑 如果选择片内振荡及复位时,P87LPC767 仅需要连接电源线和地线􀂑 串行 EPROM 编程允许在线编程2 位EPROM 安全码可防止程序被读出􀂑 空闲和掉电两种省电模式提供从掉电模式中唤醒功能低电平中断输入启动运行典型的掉电电流为1μA􀂑 低功耗 4MHz-20MHz,1.7-10mA@3.3v 100KHz-4MHz,0.044-1.7mA@3.3v 20KHz-100KHz,9-44μA@3.3v􀂑 20 脚DIP 和SO 封装

    标签: P87 767 LPC OTP

    上传时间: 2013-11-06

    上传用户:xcy122677

  • 单片机的结构原理解析

    单片机的结构原理解析 一、单片机的外部结构拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为 89C51 的芯片,下面我们就看一下如何给它连线。1、电源:这当然是必不可少的了。单片机使用的是 5V 电源,其中正极接40 引脚,负极(地)接20 引脚。2、振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19 脚。只要买来晶振,电容,连上就可以了,按图1 接上即可。3、复位引脚:按图 1 中画法连好,至于复位是何含义及为何需要复要复位,在单片机功能中介绍。4、EA 引脚:(2051 没有 )EA 引脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。我们的第一个任务是要用单片机点亮一只发光二极管 LED,按照这个图的接法,当1 脚是高电平时,LED 不亮,只有1 脚是低电平时,LED 才发亮。因此要1 脚我们要能够控制,也就是说,我们要能够让1 引脚按要求变为高或低电平。即然我们要控制1 脚,就得给它起个名字,总不能就叫它一脚吧?叫它什么名字呢?设计51 芯片的INTEL 公司已经起好了,就叫它P1.0,这是规定,不可以由我们来更改。在 2051 中叫P1_0,取决于包含的*.h 文件,可以到at892051.h 或 reg51.h 中看一看。

    标签: 单片机 结构原理

    上传时间: 2013-10-29

    上传用户:段璇琮*

  • at91rm9200启动过程教程

    at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。

    标签: 9200 at 91 rm

    上传时间: 2013-10-27

    上传用户:wsf950131

  • 内置Reset WDT电路的串行E2PROM原理及应用设计

    CAT24Cxxx是集E2PROM存储器, 精确复位控制器和看门狗定时器三种流行功能于一体的芯片。CAT24C161/162(16K),CAT24C081/082(8K),CAT24C041/042(4K)和CAT24C021/022(2K) 主要作为I2C 串行CMOS E2PROM器件,采用先进的CMOS工艺大大降低了器件的功耗。CAT24Cxxx另一特点是16 字节的页写缓冲区,提供8脚DIP和SOIC封装。CAT24Cxxx的复位功能和看门狗定时器功能保证系统出现故障的时候能给CPU一个复位信号。CAT24Cxxx的第2脚输出低电平复位信号,第7脚输出高电平复位信号。CAT24Cxx1 看狗溢出信号从SDA脚输出CAT24Cxx2不具备看门狗功能

    标签: E2PROM Reset WDT 内置

    上传时间: 2013-12-12

    上传用户:siying

  • MCS-51单片机数据存储器的扩展

    MCS-51单片机数据存储器的扩展:3 数据存储器的扩展MCS-51单片机内部有128或256个字节的数据存储器,这些存储器通常被用作工作寄存器、堆栈、临时变量等等,一般已经够用,但是如果系统要存储大量的数据,比如数据采集系统,那么片内的数据存储器就不够用了,需要进行扩展。3.1 常用的数据存储器单片机中常用的数据存储器是静态RAM存储器(SRAM),图7是几种常用的数据存储器的引脚图,以62256为例介绍,其中:A0~A14:地址输入线;D0~D7:数据线; CE:选片信号输入线,低电平有效; OE:读选通信号输入线,低电平有效; WE:写选通信号输入线,低电平有效;CE2:6264芯片的高有效选通端;VCC:工作电源,一般接+5V;GND:工作地.

    标签: MCS 51 单片机 数据存储器

    上传时间: 2013-10-28

    上传用户:jkhjkh1982

  • 80C51汇编指令集

    80C51 汇编指令集:TF1:计时器1溢出标志位,当计时器1溢出,时此位=1,发出中断请求,然后硬件自动清0.TR1:计时器1的控制位,TR1=1时,计时开始,TR1=1时则停止。TF0:计时器0溢出标志位,当计时器0溢出,时此位=1,发出中断请求,然后硬件自动清0。TR0:计时器0的控制位,TR0=1时,计时开始,TR0=1时则停止。IE1:外部中断1的请求标志位,当外部中断有请求时,此位=1,发出中断请求,然后硬件自动清0。IT1:外部中断1的中断类型控制,当IT1=1时,边沿触发方式,下降沿触发有效,当IT1=0时,电平触发方式,低电平触发有效。P3.3信号触发。IE0:外部中断0的请求标志位,当外部中断有请求时,此位=1,发出中断请求,然后硬件自动清0。IT0:外部中断0的中断类型控制,当IT0=1时,边沿触发方式,下降沿触发有效,当IT0=0时,电平触发方式,低电平触发有效。P3.2信号触发

    标签: 80C51 汇编指令集

    上传时间: 2013-11-17

    上传用户:kangqiaoyibie

  • MCP定时器产生中心对称PWM输出

    MCP定时器产生中心对称PWM输出:PWM波是一种脉宽可调的脉冲波,用于交、直流电机的电压控制。PWM一共有两种调整方法,一是定频调宽、另一种是定宽调频。其中定频调宽是种最常见的脉宽调制方式,它使脉冲波的频率保持不变,只调整脉冲宽度。同时定频调宽的PWM波形也分为两种,一种是单边的PWM,另一种是中心对称的双边PWM。中心对称的PWM主要应用在需要对称PWM波形的场合,如半桥、全桥的双极性驱动等。中心对称的PWM的生成原理如图1-2所示:定时计数器工作在连续增减计数方式,在计数初值设置为0且比较值小于周期值的条件下,当增计数过程中计数值和比较值匹配时置位输出,而在周期匹配时会改计数方向为减计数,当减计数过程中计数值和比较值匹配时复位输出,当减计数到零时会改计数方向为增计数,开始下一个循环。因此中心对称的PWM的周期为设定周期的二倍,占空比为:%100))((×−TPRNTPR(N为比较匹配数据,TPR为周期寄存器的值)。比较值的改变会影响PWM的两边的波形,并且两边相对高电平的中心对称,这便是中心对称双边PWM波形的特点。如果比较值为零,那么PWM将一直输出高电平;如比较值大于等于周期值,则PWM会一直输出低电平,占空比为0。

    标签: MCP PWM 定时器 对称

    上传时间: 2013-11-13

    上传用户:sammi

  • MCP定时器产生边沿PWM输出

    MCP定时器产生边沿PWM输出:PWM波是一种脉宽可调的脉冲波,用于交、直流电机的电压控制。PWM一共有两种调整方法,一是定频调宽、另一种是定宽调频。其中定频调宽是种最常见的脉宽调制方式,它使脉冲波的频率保持不变,只调整脉冲宽度。同时定频调宽的PWM波形也分为两种,一种是单边的PWM,另一种是中心对称的双边PWM。单边的PWM的生成原理如图1-2:定时计数器工作在增计数方式,在计数初值设置为0且比较值小于周期值的条件下,当计数值和比较值匹配时置位输出,而在周期匹配时复位输出,同时清零计数器,开始下一个循环。因此单边PWM的占空比为:%100))((×−TPRNTPR(N为比较匹配数据,TPR为周期寄存器的值)。比较值的改变只影响PWM的单边波形,这便是单边PWM波形的特点。如果比较值为零,那么PWM将一直输出高电平;如比较值同周期值相等,则PWM会输出一个时钟周期的低电平,占空比近似为0;当比较值大于周期值,那么PWM将一直输出低电平。

    标签: MCP PWM 定时器 输出

    上传时间: 2013-11-07

    上传用户:moerwang

  • MCP定时器的死区插入

    MCP定时器的死区插入: 在双极性PWM驱动系统中,上下桥臂的电力开关器件交替导通(如图1-1的半桥电路)。图1-1 电力开关半桥电路理想情况下,电力开关器件的开启和关断是不需要时间的,这时只要上下桥臂的驱动信号只要相反就可以;而实际的电力开关器件的开启和关断是需要时间的,而且关断时间比开启时间要长,这时就会出现一桥臂尚没有完全关闭的情况下,另一桥臂就导通了,这就会出现上下桥臂同时导通的情况,致使电源短路,出现很大的直通电流,导致电力器件大量发热,不但会造成电源浪费,还可能烧毁电力开关器件。因此,为避免出现上下桥臂直通的现象,就需要在一桥臂开始前,保证另一桥臂完全关断,为此,在PWM驱动信号中插入死区保护时间,如图1-2中的灰条所示(这个信号是电力器件在低电平导通,高电平关断的情况)。

    标签: MCP 定时器 死区

    上传时间: 2013-11-14

    上传用户:dgann

  • 同地弹现象的分析和讲解

    地弹的形成:芯片内部的地和芯片外的PCB地平面之间不可避免的会有一个小电感。这个小电感正是地弹产生的根源,同时,地弹又是与芯片的负载情况密切相关的。下面结合图介绍一下地弹现象的形成。 简单的构造如上图的一个小“场景”,芯片A为输出芯片,芯片B为接收芯片,输出端和输入端很近。输出芯片内部的CMOS等输入单元简单的等效为一个单刀双掷开关,RH和RL分别为高电平输出阻抗和低电平输出阻抗,均设为20欧。GNDA为芯片A内部的地。GNDPCB为芯片外PCB地平面。由于芯片内部的地要通过芯片内的引线和管脚才能接到GNDPCB,所以就会引入一个小电感LG,假设这个值为1nH。CR为接收端管脚电容,这个值取6pF。这个信号的频率取200MHz。虽然这个LG和CR都是很小的值,不过,通过后面的计算我们可以看到它们对信号的影响。先假设A芯片只有一个输出脚,现在Q输出高电平,接收端的CR上积累电荷。当Q输出变为低电平的时候。CR、RL、LG形成一个放电回路。自谐振周期约为490ps,频率为2GHz,Q值约为0.0065。使用EWB建一个仿真电路。(很老的一个软件,很多人已经不懈于使用了。不过我个人比较依赖它,关键是建模,模型参数建立正确的话仿真结果还是很可靠的,这个小软件帮我发现和解决过很多实际模拟电路中遇到的问题。这个软件比较小,有比较长的历史,也比较成熟,很容易上手。建议电子初入门的同学还是熟悉一下。)因为只关注下降沿,所以简单的构建下面一个电路。起初输出高电平,10纳秒后输出低电平。为方便起见,高电平输出设为3.3V,低电平是0V。(实际200M以上芯片IO电压会比较低,多采用1.5-2.5V。)

    标签:

    上传时间: 2013-10-17

    上传用户:zhishenglu