虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

中高频

  • 开关电源中高频磁性元件设计常见错误概念辨析

    开关电源中高频磁性元件设计常见错误概念辨析

    标签: 开关电源 中高频 磁性元件 错误

    上传时间: 2013-06-01

    上传用户:eeworm

  • 开关电源中高频磁性元件设计常见错误概念辨析.pdf

    专辑类-开关电源相关专辑-119册-749M 开关电源中高频磁性元件设计常见错误概念辨析.pdf

    标签: 开关电源 中高频 磁性元件

    上传时间: 2013-06-26

    上传用户:jing911003

  • 开关电源中高频磁性元件设计常见错误概念辨析.pdf

    开关电源相关专辑 119册 749M开关电源中高频磁性元件设计常见错误概念辨析.pdf

    标签:

    上传时间: 2014-05-05

    上传用户:时代将军

  • MM74HC4046在电压型逆变器中的设计与优化

    针对通用锁相环频率特性中高频部分线性不足的问题,对锁相环进行了改进。通过对MM74HC4046锁相环内部结构的分析,提出了一种锁相环频率特性的优化,设计出扩展压控振荡器的频率范围和改善其控制电压的电路。通过实验验证,优化后的锁相环频率特性线性度和稳定性都有了很大的改善,使得锁相环电路有更广泛的应用和很强的实用性。

    标签: 4046 MM 74 HC

    上传时间: 2013-11-21

    上传用户:huxiao341000

  • FIR数字滤波器的FPGA最佳实现方法研究.rar

    在图像处理、数据传输、雷达接收等现代信号处理领域,对信号处理的稳定性、实时性和灵活性都有很高的要求。FIR数字滤波器因其线性相位特性满足了现代信号处理领域对滤波器的高性能要求,成为应用最广泛的数字滤波器之一。高密度的FPGA兼顾实时性和灵活性,为FIR数字滤波器的实现提供了强大的硬件支持。 现今FIR数字滤波器的FPGA实现方法中最常用的是基于DA的实现方法和基于CSD编码的实现方法,本文对这两种实现方法进行了深入的探讨,并进行了一定的改进。本论文所做的主要工作和创新如下: 1、对FIR数字滤波器的硬件实现方法进行了理论研究,其中着重对并行FIR数字滤波器的实现方法进行了深入探讨并提出了一个改进的实现方法:基于CSD-DA的改进实现方法。这个实现方法在一定情况下比单纯的基于CSD编码的实现方法和基于DA的实现方法都要节约芯片面积。 2、经过电路建模和数学推导提出了“CSD-DA择优比较法”。该比较法可以从基于CSD编码的实现方法、基于DA的实现方法以及基于CSD-DA的改进实现方法中较精确的选择出最佳实现方法。 3、用Cyclone EPEC6Q240C8芯片和音频编解码芯片TLV320AIC23B实现了一个可以滤除音频信号中高频噪声的音频FIR数字低通滤波器。

    标签: FPGA FIR 数字滤波器

    上传时间: 2013-06-07

    上传用户:zhangyi99104144

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • 260份PFC入门到精通资料合集,电源相关资源整理

    无桥PFC -2019-10-08 11:34 VIENNA整流器 -2019-10-08 11:34 UC3854 -2019-10-08 11:34 (核心详细设计文件)PFC设计 3.3KW Mathcad -2019-10-08 11:34 (核心)三相维也纳(Vienna)主拓扑原理、控制及仿真 -2019-10-08 11:34 (核心)TI维也纳PFC -2019-10-08 11:34 自己总结有源功率因数校正APFC.pdf 1.6M2019-10-08 11:34 整流电路的PFC.pdf 3.8M2019-10-08 11:34 在线式三相UPS设计与仿真.doc 2.9M2019-10-08 11:34 在电源设计中加入PFC.pdf 677KB2019-10-08 11:34 在PFC整流桥和BOOST电感不能加电解电容.png 92KB2019-10-08 11:34 有源功率因数校正电路中铁氧体磁心电感器的设计.doc 503KB2019-10-08 11:34 有源功率因数校正电路(APFC).pdf 3.3M2019-10-08 11:34 应用于UPS的三相PWM整流技术研究.pdf 957KB2019-10-08 11:34 一种新型无桥BoostPFC电路.pdf 1.9M2019-10-08 11:34 一种实用的BOOST电路_UC3842升压设计.pdf 2.4M2019-10-08 11:34 一个500W单相APFC主电路的设计lc参数.pdf 144KB2019-10-08 11:34 新型PFC变换器的研究及高精度直流电源研制.pdf 3.1M2019-10-08 11:34 谐波、谐波电流、谐波电压三者的意义与区分.pdf 170KB2019-10-08 11:34 相差控制的Boost三电平变换器工作模式分析-谷鑫.pdf 1.5M2019-10-08 11:34 无桥PFC原理图及实例.pdf 940KB2019-10-08 11:34 无桥PFC原理图.pdf 129KB2019-10-08 11:34 无桥BoostPFC技术的研究.pdf 1.4M2019-10-08 11:34 无桥BoostPFC电路的主要参数设计.pdf 1.3M2019-10-08 11:34 无桥Boost-PFC电路的EMI分析.doc 657KB2019-10-08 11:34 数字控制的单周期PFC整流器的设计与分析.pdf 2.6M2019-10-08 11:34 邵革良-高性价比PFC电源设计及其电感技术.pdf 3.8M2019-10-08 11:34 三相整流桥PFC电路拓扑的分析及控制-陈贤明.pdf 1.3M2019-10-08 11:34 三相维也纳 (Vienna) 主拓扑原理、控制及仿真(上).pdf 2.5M2019-10-08 11:34 三相维也纳 (Vienna) 主拓扑原理、控制及仿真 (下).pdf 3.3M2019-10-08 11:34 三相四线制UPS前置PWM整流器研究.pdf 4.5M2019-10-08 11:34 三相逆变器DSP控制技术的研究.pdf 2.5M2019-10-08 11:34 三相电压型PWM整流器及其控制策略研究.pdf 2.5M2019-10-08 11:34 三相电压型PWM整流技术的研究.pdf 3.2M2019-10-08 11:34 三相变流器作为PFC和APF时的主电路参数选择方法的研究.pdf 1.6M2019-10-08 11:34 三相PWM大功率整流控制系统的研究.pdf 1.6M2019-10-08 11:34 三类高频链AC_AC变换器比较研究.pdf 1.5M2019-10-08 11:34 三电平BOOST双向变换器.pdf 480KB2019-10-08 11:34 三电平Boost变换器软开关技术的研究-冯海兵.pdf 2.1M2019-10-08 11:34 平均电流控制PFC过零畸变原因分析.pdf 1018KB2019-10-08 11:34 利用交错式_BCM_提高PFC级的效率.pdf 247KB2019-10-08 11:34 金属磁粉芯PFC电感分析和设计.pdf 3.2M2019-10-08 11:34 交流电源系统中的电流谐波产生原因及危害分析.ppt 663KB2019-10-08 11:34 交错式PFC_升压功率级.pdf 541KB2019-10-08 11:34 交错式BCM_PFC控制器建立可变输出电压的升压型PFC转换器.pdf 645KB2019-10-08 11:34 交错并联BoostPFC变换器设计.pdf 1.9M2019-10-08 11:34 交错并联Boost-PFC升压电感研究.pdf 241KB2019-10-08 11:34 基于单周期控制的一种双向开关型无桥PFC研究.pdf 1.2M2019-10-08 11:34 基于单周期控制的三相三开关三电平Boost型P....pdf 3.6M2019-10-08 11:34 基于单周期控制的IR1150S在无桥PFC电路的应用.pdf 1.1M2019-10-08 11:34 基于UCC28070-2KW功率因数校正PFC的应用设计.doc 679KB2019-10-08 11:34 基于UC3854控制的CCM-Boost-PFC变换器设计.pdf 247KB2019-10-08 11:34 基于UC3854的功率因数校正电路设计.pdf 491KB2019-10-08 11:34 基于UC3854的PFC功率因数校正电路设计.pdf 462KB2019-10-08 11:34 基于UC3843的PFC CCM模式Boost变换器设计.pdf 363KB2019-10-08 11:34 基于UC3842控制芯片的Boost变换器的设计.pdf 1001KB2019-10-08 11:34 基于ST L6562的120W PFC线路设计与实现.pdf 471KB2019-10-08 11:34 基于SG3525的直流升压电源的设计与仿真.pdf 1.3M2019-10-08 11:34 基于SG3525的DC_DC直流变换器的研究.pdf 1.4M2019-10-08 11:34 基于SG3525的BOOST变换器设计.pdf 998KB2019-10-08 11:34 基于L6562类芯片的单级PFC变压器设计.pdf 363KB2019-10-08 11:34 基于IR1150的无桥Boost高功率因数整流器的研究.pdf 1.2M2019-10-08 11:34 基于Buck_Boost的AC_AC变换器设计.pdf 1.2M2019-10-08 11:34 基于6561PFC功率因数校正电路.doc 1.3M2019-10-08 11:34 功率因数校正(PFC)功能的实现.pdf 7.9M2019-10-08 11:34 各种电路拓朴的同步整流技术.pdf 6.9M2019-10-08 11:34 高压直流通信电源中高频开关整流模块.pdf 640KB2019-10-08 11:34 改进的三相boost型双管PFC变换电路的研究.pdf 3M2019-10-08 11:34 峰值电流控制的单相BOOSTPFC变换器工作原理分析.pdf 1.1M2019-10-08 11:34 电流滞环法控制BOOST-PFC电路的设计与分析.Stamped.pdf 169KB2019-10-08 11:34 电流谐波.docx 13KB2019-10-08 11:34 电流临界连续时PFC电路分析.pdf 97KB2019-10-08 11:34 低输入电感电流纹波二次型Boost PFC变换器.pdf 384KB2019-10-08 11:34 单周期控制无桥Boost+PFC变换器研究.pdf 11.1M2019-10-08 11:34 单周期控制的双向半桥AC_DC变换器.pdf 1.1M2019-10-08 11:34 单周期控制单相Boost结构有源功率因数校正PFC电路的研究和应用.pdf 1.8M2019-10-08 11:34 单周期控制Boost PFC电路的研究与分析.pdf 2.1M2019-10-08 11:34 单周期控制boost PFC变换器的研究.pdf 1.2M2019-10-08 11:34 单相PFC变换器的电流过零畸变问题研究.pdf 280KB2019-10-08 11:34 单级PFC高频变压器设计及参数计算详解.pdf 405KB2019-10-08 11:34 带PFC的电感箝位移相全桥软开关电路的研究.pdf 14.2M2019-10-08 11:34 采用UC3854的有源功率因数校正电路工作原理与应用.pdf 1.1M2019-10-08 11:34 采用PFC电路抑制彩色显示器谐波电流.pdf 129KB2019-10-08 11:34 采用Boost的PFC电路输出电压纹波分析及输出滤波电容值的确定.Stamped.pdf 90KB2019-10-08 11:34 UPS电感损耗计算方法(PFCBOOST升压电感逆变LC滤波电感).pdf 2.4M2019-10-08 11:34 UPS不间断电源毕业设计.pdf 671KB2019-10-08 11:34 UC3854参数PFC设计.pdf 1.8M2019-10-08 11:34 SG3525在Buck直流变换器中的应用.pdf 1M2019-10-08 11:34 SG3525在BOOST直流变换器中的应用.pdf 859KB2019-10-08 11:34 PWM整流器在UPS系统中的应用研究.pdf 2.6M2019-10-08 11:34 PFC电感设计方法-铁氧体算法-V1.pdf 127KB2019-10-08 11:34 PFC电感计算解析.doc 309KB2019-10-08 11:34 PFC电感计算.doc 115KB2019-10-08 11:34 PFC电感计算(周洁敏).ppt 2M2019-10-08 11:34 PFC电感.pdf 1.4M2019-10-08 11:34 PFC的数字设计总结.pdf 333KB2019-10-08 11:34 PFC+LLC设计的600W开关电源调试全过程以及电源经验讨论.pdf 4.2M2019-10-08 11:34 PFC 回路とAC-DC 変換器.pdf 1.5M2019-10-08 11:34 P PFC基于移相全桥PWM变换器的开关电源设计 中南.pdf 2.9M2019-10-08 11:34 P 6KW+PFC电路的研究与设计 北工大.pdf 1.7M2019-10-08 11:34

    标签: 缺陷

    上传时间: 2013-04-15

    上传用户:eeworm

  • ProtelPCB高频电路中布线的技巧

    ProtelPCB高频电路中布线的技巧 这对硬件设计高手也有指导意义

    标签: ProtelPCB 高频电路 布线

    上传时间: 2013-09-19

    上传用户:ynsnjs

  • ProtelPCB高频电路中布线的技巧 这对硬件设计高手也有指导意义

    ProtelPCB高频电路中布线的技巧 这对硬件设计高手也有指导意义

    标签: ProtelPCB 高频电路 布线 硬件设计

    上传时间: 2015-08-27

    上传用户:koulian

  • 高频地波雷达中双排线形天线阵列的盖氏圆盘法估计信号源数

    高频地波雷达中双排线形天线阵列的盖氏圆盘法估计信号源数

    标签: 高频地波 雷达 天线阵列 信号源

    上传时间: 2015-10-06

    上传用户:003030