6小时学会labview, labview Six Hour Course – Instructor Notes This zip file contains material designed to give students a working knowledge of labview in a 6 hour timeframe. The contents are: Instructor Notes.doc – this document. labviewIntroduction-SixHour.ppt – a PowerPoint presentation containing screenshots and notes on the topics covered by the course. Convert C to F (Ex1).vi – Exercise 1 solution VI. Convert C to F (Ex2).vi – Exercise 2 solution subVI. Thermometer-DAQ (Ex2).vi – Exercise 2 solution VI. Temperature Monitor (Ex3).vi – Exercise 3 solution VI. Thermometer (Ex4).vi – Exercise 4 solution subVI. Convert C to F (Ex4).vi – Exercise 4 solution subVI. Temperature Logger (Ex4).vi – Exercise 4 solution VI. Multiplot Graph (Ex5).vi – Exercise 5 solution VI. Square Root (Ex6).vi – Exercise 6 solution VI. State Machine 1 (Ex7).vi – Exercise 7 solution VI. The slides can be presented in two three hour labs, or six one hour lectures. Depending on the time and resources available in class, you can choose whether to assign the exercises as homework or to be done in class. If you decide to assign the exercises in class, it is best to assign them in order with the presentation. This way the students can create VI’s while the relevant information is still fresh. The notes associated with the exercise slide should be sufficient to guide the students to a solution. The solution files included are one possible solution, but by no means the only solution.
标签: labview
上传时间: 2013-10-13
上传用户:zjwangyichao
Abstract: while many questions still surround the creation and deployment of the smart grid, the need for a reliablecommunications infrastructure is indisputable. Developers of the IEEE 1901.2 standard identified difficult channel conditionscharacteristic of low-frequency powerline communications and implemented an orthogonal frequency division multiplexing (OFDM)architecture using advanced modulation and channel-coding techniques. This strategy helped to ensure a robust communicationsnetwork for the smart grid.
上传时间: 2013-10-18
上传用户:myworkpost
Abstract: This application note illustrates the flexibility of the MAX7060 ASK/FSK transmitter. while the currently available evaluationkit (EV kit) has been optimized for the device's use in a specific frequency band (i.e., 288MHz to 390MHz), this document addresseshow the EV kit circuitry can be modified for improved operation at 433.92MHz, a frequency commonly used in Europe. Twoalternative match and filter configurations are presented: one for optimizing drain efficiency, the other for achieving higher transmitpower. Features and capabilities of earlier Maxim industrial, scientific, and medical radio-frequency (ISM-RF) transmitters areprovided, allowing comparison of the MAX7060 to its predecessors. Several design guidelines and cautions for using the MAX7060are discussed.
上传时间: 2013-11-14
上传用户:swaylong
Agilent AN 154 S-Parameter Design Application Note S参数的设计与应用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. while the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
标签: S参数
上传时间: 2013-12-19
上传用户:aa54
This book evolved over the past ten years from a set of lecture notes developed while teaching the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching this course evolved tremendously over these years in a number of directions, partly to address our students' background (undeveloped formal skills outside of programming), and partly to reect the maturing of the eld in general, as we have come to see it. The notes increasingly crystallized into a narrative, and we progressively structured the course to emphasize the story line implicit in the progression of the material. As a result, the topics were carefully selected and clustered. No attempt was made to be encyclopedic, and this freed us to include topics traditionally de-emphasized or omitted from most Algorithms books.
标签: Algorithms 算法
上传时间: 2013-11-11
上传用户:JamesB
飞思卡尔智能车的舵机测试程序 #include <hidef.h> /* common defines and macros */#include <MC9S12XS128.h> /* derivative information */#pragma LINK_INFO DERIVATIVE "mc9s12xs128" void SetBusCLK_16M(void) { CLKSEL=0X00; PLLCTL_PLLON=1; //锁相环电路允许位 SYNR=0x00 | 0x01; //SYNR=1 REFDV=0x80 | 0x01; POSTDIV=0x00; _asm(nop); _asm(nop); while(!(CRGFLG_LOCK==1)); CLKSEL_PLLSEL =1; } void PWM_01(void) { //舵机初始化 PWMCTL_CON01=1; //0和1联合成16位PWM; PWMCAE_CAE1=0; //选择输出模式为左对齐输出模式 PWMCNT01 = 0; //计数器清零; PWMPOL_PPOL1=1; //先输出高电平,计数到DTY时,反转电平 PWMPRCLK = 0X40; //clockA 不分频,clockA=busclock=16MHz;CLK B 16分频:1Mhz PWMSCLA = 0x08; //对clock SA 16分频,pwm clock=clockA/16=1MHz; PWMCLK_PCLK1 = 1; //选择clock SA做时钟源 PWMPER01 = 20000; //周期20ms; 50Hz; PWMDTY01 = 1500; //高电平时间为1.5ms; PWME_PWME1 = 1;
上传时间: 2013-11-04
上传用户:狗日的日子
目录 C语言基础知识 C 语言简介 C 语言的特点… C 语言的发展和标准化…数据类型、运算、表达式和编译预处理 数据类型… 基本类型与数据表示 整数类型和整数的表示… 实数类型和实数的表示… 字符类型和字符的表示… 运算符、表达式与计算… 算术运算符 算术表达式 表达式的求值… 变量——概念、定义和使用… 变量的定义0 变量的使用:取值与赋值 预处理 文件包含命令… 宏定义与宏替换…逻辑判断与运算… 关系运算和逻辑运算 复杂条件的描述0 i f语句循环控制 whi le语句 for语句… 循环程序常用的若干机制 增量和减量运算符(++、--) 逗号运算符 控制结构和控制语句 do-while循环结构… 流程控制语句… goto语句… 开关语句…函数 概述… 函数定义和程序的函数分解… 函数定义… 函数调用…数组 数组的概念、定义和使用 数组变量定义… 数组的使用 数组的初始化…结构 结构(struct) 结构说明与变量定义 结构变量的初始化和使用 结构与函数 处理结构的函数0指针 指针的概念 指针操作… 指针作为函数的参数 与指针有关的一些问题… 指针与数组 指向数组元素的指针 基于指针运算的数组程序设计 数组参数与指针 字符指针与字符数组0
上传时间: 2013-11-16
上传用户:asdkin
//------------------------------------------------------------------------------------//此程序为ADC转换程序,可以选择向ADC0BUSY写1或用定时器0,1,2,3作为ADC的启动信号。////------------------------------------------------------------------------------------//头文件定义//------------------------------------------------------------------------------------//#include <c8051f330.h> #include <stdio.h> //-----------------------------------------------------------------------------// 定义16位特殊功能寄存器//----------------------------------------------------------------------------- sfr16 ADC0 = 0xbd; sfr16 TMR0RL = 0xca; sfr16 TMR1RL = 0xca; sfr16 TMR2RL =0xca; sfr16 TMR3RL =0xca; sfr16 TMR0 = 0xCC; sfr16 TMR1 = 0xCC; sfr16 TMR2 = 0xcc; sfr16 TMR3 = 0xcc; //-----------------------------------------------------------------------------// 全局变量定义//-----------------------------------------------------------------------------char i;int result; //-----------------------------------------------------------------------------//定义常量//-----------------------------------------------------------------------------#define SYSCLK 49000000 #define SAMPLE_RATE 50000 //------------------------------------------------------------------------------------// 定义函数//------------------------------------------------------------------------------------void SYSCLK_Init (void);void PORT_Init (void);void Timer0_Init (int counts);void Timer1_Init (int counts);void Timer2_Init (int counts);void Timer3_Init (int counts);void ADC0_Init(void);void ADC0_ISR (void);void ADC0_CNVS_ADC0h(void);//------------------------------------------------------------------------------------// 主程序//------------------------------------------------------------------------------------ void main (void) { int ADCRESULT[50] ; int k; PCA0MD &= ~0x40; // 禁止看门狗 SYSCLK_Init (); PORT_Init (); Timer0_Init (SYSCLK/SAMPLE_RATE); //Timer1_Init (SYSCLK/SAMPLE_RATE); //选择相应的启动方式 //Timer2_Init (SYSCLK/SAMPLE_RATE); //Timer3_Init (SYSCLK/SAMPLE_RATE); ADC0_Init(); EA=1; while(1) { //ADC0_CNVS_ADC0h(); k=ADC0; ADCRESULT[i]=result; //此处设断点,观察ADCRESULT的结果 } }
上传时间: 2013-10-13
上传用户:SimonQQ
温湿度传感器 sht11 仿真程序 sbit out =P3^0; //加热口 //sbit input =P1^1;//检测口 //sbit speek =P2^0;//报警 sbit clo =P3^7;//时钟 sbit ST =P3^5;//开始 sbit EOC =P3^6;//成功信号 sbit gwei =P3^4;//个位 sbit swei =P3^3;//十位 sbit bwei =P3^2;//百位 sbit qwei =P3^1;//千位 sbit speak =P0^0;//报警音 sbit bjled =P0^1;//报警灯 sbit zcled =P0^2;//正常LED int count; uchar xianzhi;//取转换结果 uchar seth;//高时间 uchar setl;//低时间 uchar seth_mi;//高时间 uchar setl_mi;//低时间 bit hlbz;//高低标志 bit clbz; bit spbz; ///定时中断程序/// void t0 (void) interrupt 1 using 0 { TH0=(65536-200)/256;//5ms*200=1000ms=1s TL0=(65536-200)%256; clo=!clo;//产生时钟 if(count>5000) { if(hlbz) { if(seth_mi==0){seth_mi=seth;hlbz=0;out=0;} else seth_mi--; } if(!hlbz) { if(setl_mi==0){setl_mi=setl;hlbz=1;out=1;} else setl_mi--; } count=0; } else count++; } ///////////// ///////延时/////// delay(int i) { while(--i); } ///////显示处理/////// xianshi() { int abcd=0; int i; for (i=0;i<5;i++) { abcd=xianzhi; gwei=1; swei=1; bwei=1; qwei=1; P1=dispcode[abcd/1000]; qwei=0; delay(70); qwei=1; abcd=abcd%1000; P1=dispcode[abcd/100]; bwei=0; delay(70); bwei=1; abcd=abcd%100; P1=dispcode[abcd/10]; swei=0; delay(70); swei=1; abcd=abcd%10; P1=dispcode[abcd]; gwei=0; delay(70); gwei=1; } } doing() { if(xianzhi>100) {bjled=0;speak=1;zcled=1;} else {bjled=1;speak=0;zcled=0;} } void main(void) { seth=60;//h60秒 setl=90;//l90秒 seth_mi=60;//h60秒 setl_mi=90;//l90秒 TMOD=0X01;//定时0 16位工作模式 TH0=(65536-200)/256; TL0=(65536-200)%256; TR0=1; //开始计时 ET0=1; //开定时0中断 EA=1; //开全中断 while(1) { ST=0; _nop_(); ST=1; _nop_(); ST=0; // EOC=0; xianshi(); while(!EOC) { xianshi(); } xianzhi=P2; xianshi(); doing(); } }
上传时间: 2013-11-07
上传用户:我们的船长
中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman