The PCA9537 is a 10-pin CMOS device that provides 4 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provide a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.
上传时间: 2013-10-14
上传用户:wuchunzhong
The PCA9538 is a 16-pin CMOS device that provides 8 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provide a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.
上传时间: 2014-01-24
上传用户:youmo81
The PCA9539; PCA9539R is a 24-pin CMOS device that provides 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion with interrupt and reset forI2C-bus/SMBus applications and was developed to enhance the NXP Semiconductorsfamily of I2C-bus I/O expanders. I/O expanders provide a simple solution when additionalI/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.
上传时间: 2013-11-10
上传用户:ewtrwrtwe
The PCA9519 is a 4-channel level translating I2C-bus/SMBus repeater that enables theprocessor low voltage 2-wire serial bus to interface with standard I2C-bus or SMBus I/O.While retaining all the operating modes and features of the I2C-bus system during thelevel shifts, it also permits extension of the I2C-bus by providing bidirectional buffering forboth the data (SDA) and the clock (SCL) lines, thus enabling the I2C-bus or SMBusmaximum capacitance of 400 pF on the higher voltage side. The SDA and SCL pins areover-voltage tolerant and are high-impedance when the PCA9519 is unpowered.
标签: 4channel transla level 9519
上传时间: 2013-11-19
上传用户:jisiwole
The PCA9541 is a 2-to-1 I2C-bus master selector designed for high reliability dual masterI2C-bus applications where system operation is required, even when one master fails orthe controller card is removed for maintenance. The two masters (for example, primaryand back-up) are located on separate I2C-buses that connect to the same downstreamI2C-bus slave devices. I2C-bus commands are sent by either I2C-bus master and are usedto select one master at a time. Either master at any time can gain control of the slavedevices if the other master is disabled or removed from the system. The failed master isisolated from the system and will not affect communication between the on-line masterand the slave devices on the downstream I2C-bus.
上传时间: 2013-10-09
上传用户:3294322651
The PCA9544A provides 4 interrupt inputs, one for each channeland one open drain interrupt output. when an interrupt is generated byany device, it will be detected by the PCA9544A and the interruptoutput will be driven LOW. The channel need not be active fordetection of the interrupt. A bit is also set in the control byte.Bits 4 – 7 of the control byte correspond to channels 0 – 3 of thePCA9544A, respectively. Therefore, if an interrupt is generated byany device connected to channel 2, the state of the interrupt inputs isloaded into the control register when a read is accomplished.Likewise, an interrupt on any device connected to channel 0 wouldcause bit 4 of the control register to be set on the read. The mastercan then address the PCA9544A and read the contents of thecontrol byte to determine which channel contains the devicegenerating the interrupt. The master can then reconfigure thePCA9544A to select this channel, and locate the device generatingthe interrupt and clear it. The interrupt clears when the deviceoriginating the interrupt clears.
标签: 4channel multiple 9544A 9544
上传时间: 2014-12-28
上传用户:潜水的三贡
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the contents of the programmable Controlregister. when the I2C-bus bit is HIGH (logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. when the I2C-bus bit is LOW (logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
上传时间: 2014-11-22
上传用户:xcy122677
The PCA9555 is a 24-pin CMOS device that provides 16 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvementsinclude higher drive capability, 5 V I/O tolerance, lower supply current, individual I/Oconfiguration, and smaller packaging. I/O expanders provide a simple solution whenadditional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Outputand Polarity Inversion (active HIGH or active LOW operation) registers. The systemmaster can enable the I/Os as either inputs or outputs by writing to the I/O configurationbits. The data for each Input or Output is kept in the corresponding Input or Outputregister. The polarity of the read register can be inverted with the Polarity Inversionregister. All registers can be read by the system master. Although pin-to-pin and I2C-busaddress compatible with the PCF8575, software changes are required due to theenhancements, and are discussed in Application Note AN469.
上传时间: 2013-11-13
上传用户:fredguo
The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicrocontrollerCore. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementationof the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision1.1.This application note describes a demonstration program that has been written for the DK3200 hardwaredemonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to workwith the device, using the HID class as a ready-made device driver for the USB connection.IN-APPLICATION-PROGRAMMING (IAP) AND IN-SYSTEM-PROGRAMMING (ISP)Since the μPSD contains two independent Flash memory arrays, the Micro Controller Unit (MCU) can executecode from one memory while erasing and programming the other. Product firmware updates in thefield can be reliably performed over any communication channel (such as CAN, Ethernet, UART, J1850)using this unique architecture. For In-Application-Programming (IAP), all code is updated through theMCU. The main advantage for the user is that the firmware can be updated remotely. The target applicationruns and takes care on its own program code and data memory.IAP is not the only method to program the firmware in μPSD devices. They can also be programmed usingIn-System-Programming (ISP). A IEEE1149.1-compliant JTAG interface is included on the μPSD. Withthis, the entire device can be rapidly programmed while soldered to the circuit board (Main Flash memory,Secondary Boot Flash memory, the PLD, and all configuration areas). This requires no MCU participation.The MCU is completely bypassed. So, the μPSD can be programmed or reprogrammed any time, anywhere, even when completely uncommitted.Both methods take place with the device in its normal hardware environment, soldered to a printed circuitboard. The IAP method cannot be used without previous use of ISP, because IAP utilizes a small amountof resident code to receive the service commands, and to perform the desired operations.
标签: Demonstration 3200 USB for
上传时间: 2014-02-27
上传用户:zhangzhenyu
计算机部件要具有通用性,适应不同系统与不同用户的需求,设计必须模块化。计算机部件产品(模块)供应出现多元化。模块之间的联接关系要标准化,使模块具有通用性。模块设计必须基于一种大多数厂商认可的模块联接关系,即一种总线标准。总线的标准总线是一类信号线的集合是模块间传输信息的公共通道,通过它,计算机各部件间可进行各种数据和命令的传送。为使不同供应商的产品间能够互换,给用户更多的选择,总线的技术规范要标准化。总线的标准制定要经周密考虑,要有严格的规定。总线标准(技术规范)包括以下几部分:机械结构规范:模块尺寸、总线插头、总线接插件以及按装尺寸均有统一规定。功能规范:总线每条信号线(引脚的名称)、功能以及工作过程要有统一规定。电气规范:总线每条信号线的有效电平、动态转换时间、负载能力等。总线的发展情况S-100总线:产生于1975年,第一个标准化总线,为微计算机技术发展起到了推动作用。IBM-PC个人计算机采用总线结构(Industry Standard Architecture, ISA)并成为工业化的标准。先后出现8位ISA总线、16位ISA总线以及后来兼容厂商推出的EISA(Extended ISA)32位ISA总线。为了适应微处理器性能的提高及I/O模块更高吞吐率的要求,出现了VL-Bus(VESA Local Bus)和PCI(Peripheral Component Interconnect,PCI)总线。适合小型化要求的PCMCIA(Personal Computer Memory Card International Association)总线,用于笔记本计算机的功能扩展。总线的指标计算机主机性能迅速提高,各功能模块性能也要相应提高,这对总线性能提出更高的要求。总线主要技术指标有几方面:总线宽度:一次操作可以传输的数据位数,如S100为8位,ISA为16位,EISA为32位,PCI-2可达64位。总线宽度不会超过微处理器外部数据总线的宽度。总数工作频率:总线信号中有一个CLK时钟,CLK越高每秒钟传输的数据量越大。ISA、EISA为8MHz,PCI为33.3MHz, PCI-2可达达66.6MHz。单个数据传输周期:不同的传输方式,每个数据传输所用CLK周期数不同。ISA要2个,PCI用1个CLK周期。这决定总线最高数据传输率。5. 总线的分类与层次系统总线:是微处理器芯片对外引线信号的延伸或映射,是微处理器与片外存储器及I/0接口传输信息的通路。系统总线信号按功能可分为三类:地址总线(Where):指出数据的来源与去向。地址总线的位数决定了存储空间的大小。系统总线:数据总线(What)提供模块间传输数据的路径,数据总线的位数决定微处理器结构的复杂度及总体性能。控制总线(when):提供系统操作所必需的控制信号,对操作过程进行控制与定时。扩充总线:亦称设备总线,用于系统I/O扩充。与系统总线工作频率不同,经接口电路对系统总统信号缓冲、变换、隔离,进行不同层次的操作(ISA、EISA、MCA)局部总线:扩充总线不能满足高性能设备(图形、视频、网络)接口的要求,在系统总线与扩充总线之间插入一层总线。由于它经桥接器与系统总线直接相连,因此称之为局部总线(PCI)。
上传时间: 2013-11-09
上传用户:nshark