Support Vector Machines is a powerful methodology for solving problems in nonlinear classification and regression. It is a matlab version.
标签: classification methodology nonlinear Machines
上传时间: 2015-06-08
上传用户:bruce
a non-sharing smart pointer class that can be used with STL containers such as std::map, vector, list, set, and deque. The smart pointer has an assignment operator and greater than operator that call the target object s operator.
标签: non-sharing containers pointer vector
上传时间: 2015-06-15
上传用户:Late_Li
This is SvmFu, a package for training and testing support vector machines (SVMs). It s written in C++. It uses templates. The advantage of templates is that the types of kernel values and data points can be varied to suit the problem.
标签: machines training package testing
上传时间: 2015-07-03
上传用户:zhengzg
java开发中Vector、ArrayList和List的异同
标签: ArrayList Vector java List
上传时间: 2014-07-31
上传用户:lo25643
这是采用STL的VECTOR 做的一个程序,希望对大家有帮助
上传时间: 2015-08-03
上传用户:二驱蚊器
vectline "vector field line plotter" Depending on the dimension of coordinate axis, vectline can plot both 3D and 2D vector field line.
标签: vectline coordinate Depending dimension
上传时间: 2014-01-11
上传用户:invtnewer
LINEINTRGAL Line Integral in a 2D Vector Field. LINEINTRGAL(X,Y,U,V,C) computes the line integral along the lines given in cell array C. X and Y define the coordinates of a rectangular grid over which U and V are defined. X and Y must be monotonic and 2D plaid as % produced by MESHGRID. X, Y, U, and V must all be the same size.
标签: LINEINTRGAL Integral computes integral
上传时间: 2014-01-13
上传用户:hwl453472107
按照官方的说法:Cairo is a vector graphics library with cross-device output support. 翻译过来,就是cairo是一个支持多种输出的向量图形库。 具体解释一下,也就是说,cairo是种画图的工具库,他可以向多种设备上画图,比如: cairo可以输出到png,可以输出到pdf,可以输出到ps,可以输出到xlib,可以输出到XCB,可以输出到win32,以后还要输出到svg 我们可以展望一下,如果cairo能够统一linux下所有的画图接口,那么,所见所得可能就会成为显示。
标签: cross-device graphics library support
上传时间: 2015-08-16
上传用户:xwd2010
SVM, Support Vector Machine 支持向量机程序
标签: Machine Support Vector SVM
上传时间: 2014-01-12
上传用户:rocketrevenge
LVQ算法( Learning Vector Quantization,学习矢量量化网络)是一种基于模型(神经网络)的方法,本实验要实现的是对LVQ改进的聚类方法——MLVQ(闫德勤等人提出)。该方法克服了LVQ算法对初值敏感的问题和广义学习矢量量化(GLVQ)网络算法性能不稳定的缺点。(附文章)
标签: Quantization Learning Vector LVQ
上传时间: 2015-08-31
上传用户:youke111