·stanford&IBM牛人经典之作 - Digital Control of Dynamic SystemsEditorial ReviewsProduct DescriptionThis well-respected, market-leading text discusses the use of digital computers in the real-time co
标签: nbsp Hardcover Digital Control
上传时间: 2013-07-31
上传用户:cuiyashuo
这是一个unix环境下实现基于身份的PKI系统源码,由stanford大学开发。采用了椭圆曲线密码公钥系统和配对椭圆曲线计算(Tate Pairing),具有非常高的效率.
上传时间: 2015-03-19
上传用户:二驱蚊器
算法ebook(10部算法经典著作的合集) 算法ebook> 10部算法经典著作的合集 chm格式 (1)Fundamentals of Data Structures by Ellis Horowitz and Sartaj Sahni (2)Data Structures, Algorithms and Program Style Using C by James F. Korsh and Leonard J. Garrett (3)Data Structures and Algorithm Analysis in C by Mark Allen Weiss (4)Data Structures: From Arrays to Priority Queues by Wayne Amsbury (5)Information Retrieval: Data Structures & Algorithms edited by William B. Frakes and Ricardo Baeza-Yates (6)Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest (7)Practical Data Structures in C++ by Bryan Flamig (8)Reliable Data Structures in C by Thomas Plum (9)Data Structures and Algorithms Alfred V. Aho, Bell Laboratories, Murray Hill, New Jersey John E. Hopcroft, Cornell University, Ithaca, New York Jeffrey D. Ullman, stanford University, stanford, California (10)DDJ Algorithms and Data Structures Articles
标签: ebook Fundamentals Structures Ellis
上传时间: 2015-04-04
上传用户:tfyt
GMVQ算法,stanford大学Gray先生经典之作
上传时间: 2014-11-29
上传用户:天诚24
贝叶斯网络的一个很好用的工具箱,基于matlab7.0版本。有stanford大学的一个博士生编写;属于源代码开放性质。
上传时间: 2014-01-20
上传用户:英雄
FFTGUI Demonstration of Finite Fourier Transform. FFTGUI(y) plots real(y), imag(y), real(fft(y)) and imag(fft(y)). FFTGUI, without any arguments, uses y = zeros(1,32). When any point is moved with the mouse, the other plots respond. Inspired by Java applet by Dave Hale, stanford Exploration Project, http://sepwww.stanford.edu/oldsep/hale/FftLab.html
标签: FFTGUI real Demonstration Transform
上传时间: 2017-06-05
上传用户:anng
这是一个windows环境下实现基于身份的PKI系统源码,由stanford大学开发。采用了椭圆曲线密码公钥系统和配对椭圆曲线计算(Tate Pairing),具有非常高的效率.
上传时间: 2014-01-23
上传用户:来茴
隐含马尔可夫模型的入门资料,stanford机器学习课程资料 Introduction to the HMM model.
标签: 马尔可夫模型
上传时间: 2017-09-04
上传用户:huangld
This book is an outgrowth of a course developed at stanford University over the past five years. It is suitable as a self-contained textbook for second-level undergraduates or for first-level graduate students in almost every field that employs quantitative methods. As prerequisites, it is assumed that the student may have had a first course in differential equations and a first course in linear algebra or matrix analysis. These two subjects, however, are reviewed in Chapters 2 and 3, insofar as they are required for later developments.
标签: Introduction_to_Dynamic_Systems
上传时间: 2020-06-10
上传用户:shancjb
斯坦福大学-深度学习基础教程.pdfUFLDL教程 From Ufldl 说明:本教程将阐述无监督特征学习和深入学习的主要观点。通过学习,你也将实现多个功能 学习/深度学习算法,能看到它们为你工作,并学习如何应用/适应这些想法到新问题上。 本教程假定机器学习的基本知识(特别是熟悉的监督学习,逻辑回归,梯度下降的想法),如果 你不熟悉这些想法,我们建议你去这里 机器学习课程 (http://openclassroom.stanford.edu/MainFolder/CoursePage.php? course=MachineLearning) ,并先完成第II,III,IV章(到逻辑回归)。 稀疏自编码器 神经网络 反向传导算法 梯度检验与高级优化 自编码算法与稀疏性 可视化自编码器训练结果 稀疏自编码器符号一览表 Exercise:Sparse Autoencoder 矢量化编程实现 矢量化编程 逻辑回归的向量化实现样例 神经网络向量化 Exercise:Vectorization
标签: 深度学习
上传时间: 2022-03-27
上传用户:kingwide