虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

provIDE

  • PCA9534 8bit I2C bus and SMBus low power IO port with interru

    The PCA9534 is a 16-pin CMOS device that provIDE 8 bits of General Purpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvements include higher drive capability, 5 V I/O tolerance, lower supply current, individual I/O configuration, 400 kHz clock frequency, and smaller packaging. I/O expanders provIDE a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.

    标签: interru SMBus power 9534

    上传时间: 2013-10-10

    上传用户:inwins

  • PCA9535 PCA9535C 16bit I2C bus

    The PCA9535 and PCA9535C are 24-pin CMOS devices that provIDE 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and wasdeveloped to enhance the NXP Semiconductors family of I2C-bus I/O expanders. Theimprovements include higher drive capability, 5 V I/O tolerance, lower supply current,individual I/O configuration, and smaller packaging. I/O expanders provIDE a simplesolution when additional I/O is needed for ACPI power switches, sensors, push buttons,LEDs, fans, etc.

    标签: 9535 PCA 9535C I2C

    上传时间: 2013-10-21

    上传用户:爱死爱死

  • PCA9536 4bit I2C bus and SMBus

    The PCA9536 is an 8-pin CMOS device that provIDEs 4 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. I/O expanders provIDEa simple solution when additional I/O is needed for ACPI power switches, sensors,push buttons, LEDs, fans, etc.

    标签: SMBus 9536 4bit PCA

    上传时间: 2013-10-09

    上传用户:731140412

  • PCA9537 4bit I2C bus and SMBus

    The PCA9537 is a 10-pin CMOS device that provIDEs 4 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provIDE a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.

    标签: SMBus 9537 4bit PCA

    上传时间: 2013-10-14

    上传用户:wuchunzhong

  • PCA9538 8bit I2C bus and SMBus

    The PCA9538 is a 16-pin CMOS device that provIDEs 8 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provIDE a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.

    标签: SMBus 9538 8bit PCA

    上传时间: 2014-01-24

    上传用户:youmo81

  • PCA9539 PCA9539R 16-bit I2C-bu

    The PCA9539; PCA9539R is a 24-pin CMOS device that provIDEs 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion with interrupt and reset forI2C-bus/SMBus applications and was developed to enhance the NXP Semiconductorsfamily of I2C-bus I/O expanders. I/O expanders provIDE a simple solution when additionalI/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.

    标签: 9539 PCA 9539R C-bu

    上传时间: 2013-11-10

    上传用户:ewtrwrtwe

  • PCA9555 16bit I2C-bus and SMBu

    The PCA9555 is a 24-pin CMOS device that provIDEs 16 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvementsinclude higher drive capability, 5 V I/O tolerance, lower supply current, individual I/Oconfiguration, and smaller packaging. I/O expanders provIDE a simple solution whenadditional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Outputand Polarity Inversion (active HIGH or active LOW operation) registers. The systemmaster can enable the I/Os as either inputs or outputs by writing to the I/O configurationbits. The data for each Input or Output is kept in the corresponding Input or Outputregister. The polarity of the read register can be inverted with the Polarity Inversionregister. All registers can be read by the system master. Although pin-to-pin and I2C-busaddress compatible with the PCF8575, software changes are required due to theenhancements, and are discussed in Application Note AN469.

    标签: C-bus 9555 SMBu PCA

    上传时间: 2013-11-13

    上传用户:fredguo

  • 8-bit IC and SMBus IO Port wit

    The CAT9534 is an 8-bit parallel input/output portexpander for I²C and SMBus compatible applications.These I/O expanders provIDE a simple solution inapplications where additional I/Os are needed: sensors,power switches, LEDs, pushbuttons, and fans.The CAT9534 consists of an input port register, anoutput port register, a configuration register, a polarityinversion register and an I²C/SMBus-compatible serialinterface.

    标签: SMBus Port bit and

    上传时间: 2013-11-09

    上传用户:liulinshan2010

  • Input Signal Rise and Fall Tim

    All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provIDE proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provIDE the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.

    标签: Signal Input Fall Rise

    上传时间: 2013-10-23

    上传用户:copu

  • 介绍C16x系列微控制器的输入信号升降时序图及特性

    All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provIDE proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.

    标签: C16x 微控制器 输入信号 时序图

    上传时间: 2014-04-02

    上传用户:han_zh