The PCA9535 and PCA9535C are 24-pin CMOS devices that provide 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and wasdeveloped to enhance the NXP Semiconductors family of I2C-bus I/O expanders. Theimprovements include higher drive capability, 5 V I/O tolerance, lower supply current,individual I/O configuration, and smaller packaging. I/O expanders provide a simplesolution when additional I/O is needed for ACPI power switches, sensors, push buttons,LEDs, fans, etc.
上传时间: 2013-10-21
上传用户:爱死爱死
The PCA9539; PCA9539R is a 24-pin CMOS device that provides 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion with interrupt and reset forI2C-bus/SMBus applications and was developed to enhance the NXP Semiconductorsfamily of I2C-bus I/O expanders. I/O expanders provide a simple solution when additionalI/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.
上传时间: 2013-11-10
上传用户:ewtrwrtwe
The PCA9557 is a silicon CMOS circuit which provides parallel input/output expansion for SMBus and I2C-bus applications. The PCA9557 consists of an 8-bit input port register, 8-bit output port register, and an I2C-bus/SMBus interface. It has low current consumption and a high-impedance open-drain output pin, IO0. The system master can enable the PCA9557’s I/O as either input or output by writing to the configuration register. The system master can also invert the PCA9557 inputs by writing to the active HIGH polarity inversion register. Finally, the system master can reset the PCA9557 in the event of a time-out by asserting a LOW in the reset input. The power-on reset puts the registers in their default state and initializes the I2C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without de-powering the part.
上传时间: 2014-01-18
上传用户:bs2005
Although Stellaris microcontrollers have generous internal SRAM capabilities, certain applicationsmay have data storage requirements that exceed the 8 KB limit of the Stellaris LM3S8xx seriesdevices. Since microcontrollers do not have an external parallel data-bus, serial memory optionsmust be considered. Until recently, the ubiquitous serial EEPROM/flash device was the only serialmemory solution. The major limitations of EEPROM and flash technology are slow write speed, slowerase times, and limited write/erase endurance.Recently, serial SRAM devices have become available as a solution for high-speed dataapplications. The N256S08xxHDA series of devices, from AMI Semiconductor, offer 32 K x 8 bits oflow-power data storage, a fast Serial Peripheral Interface (SPI) serial bus, and unlimited write cycles.The parts are available in 8-pin SOIC and compact TSSOP packages.
上传时间: 2013-10-14
上传用户:cxl274287265
基于单DSP的VoIP模拟电话适配器研究与实现:提出和实现了一种新颖的基于单个通用数字信号处理器(DSP)的VoIP模拟电话适配器方案。DSP的I/O和存储资源非常有限,通常适于运算密集型应用,不适宜控制密集型应用[5]。该系统高效利用单DSP的I/O和片内外存储器资源,采用μC/OS-II嵌入式实时操作系统,支持SIP和TCP-UDP/IP协议,通过LAN或者宽带接入,使普通电话机成为Internet终端,实现IP电话。该系统软硬件结构紧凑高效,运行稳定,成本低,具有广阔的应用前景。关键词:模拟电话适配器;IP电话;数字信号处理器;μC/OS-II 【Abstract】This paper presents a VoIP ATA solution based on a single digital signal processor (DSP). DSPs are suitable for arithmetic-intensiveapplication and unsuitable for control-intensive application because of the limitation of I/O and memory resources. This solution is based on a 16-bitfixed-point DSP and μC/OS-II embedded real-time operating system. It makes good use of the limited resources, supports SIP and TCP-UDP/IPprotocol. It can connect the analog telephone to Internet and realize the VoIP application. This system has a great future for its high efficiency andlow cost.【Key words】Analog telephone adapter (ATA); Voice over Internet protocol (VoIP); Digital signal processor (DSP); μC/OS-II Research and Implementation of VoIPATA Based on Single DSP
上传时间: 2013-11-20
上传用户:Wwill
The C500 microcontroller family usually provides only one on-chip synchronous serialchannel (SSC). If a second SSC is required, an emulation of the missing interface mayhelp to avoid an external hardware solution with additional electronic components.The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using optimized SW routines with a performance up to 25KBaud in Slave Mode with half duplex transmission and an overhead less than 60% atSAB C513 with 12 MHz. Due to the implementation in C this performance is not the limitof the chip. A pure implementation in assembler will result in a strong reduction of theCPU load and therefore increase the maximum speed of the interface. In addition,microcontrollers like the SAB C505 will speed up the interface by a factor of two becauseof an optimized architecture compared with the SAB C513.Moreover, this solution lays stress on using as few on-chip hardware resources aspossible. A more excessive consumption of those resources will result in a highermaximum speed of the emulated interface.Due to the restricted performance of an 8 bit microcontroller a pin compatible solution isprovided only; the internal register based programming interface is replaced by a set ofsubroutine calls.The attached source files also contain a test shell, which demonstrates how to exchangeinformation between an on-chip HW-SSC and the emulated SW-SSC via 5 external wiresin different operation modes. It is based on the SAB C513 (Siemens 8 bit microcontroller).A table with load measurements is presented to give an indication for the fraction of CPUperformance required by software for emulating the SSC.
标签: synchronous Emulating serial
上传时间: 2014-01-31
上传用户:z1191176801
The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using SW routines implemented in C. The code is focused onthe SAB C513, but will fit to all C500 derivatives.Beyond the low level software drivers a test shell is delivered. This shell allows a quicktest of the software drivers by an emulator or a starter kit demo board.
上传时间: 2013-11-24
上传用户:363186
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
上传时间: 2013-10-23
上传用户:copu
Abstract: This application note explains the hardware of different types of 1-Wire® interfaces and software examples adapted to this hardware with a focus on serial ports. Depending on the types of iButtons required for a project and the type of computer to be used, the most economical interface is easily found. The hardware examples shown are basically two different types: 5V general interface and 12V RS-232 interface. Within the 5V group a common printed circuit board could be used for all circuits described. The variations can be achieved by different populations of components. The same principal is used for the 12V RS-232 interface. The population determines if it is a Read all or a Read/Write all type of interface. There are other possible circuit implementations to create a 1-Wire interface. The circuits described in this application note cover many different configurations. For a custom application, one of the described options can be adapted to meet individual needs.
标签: iButtons Reading Writing and
上传时间: 2013-10-29
上传用户:long14578
The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8Kbytes of Flash programmable and erasable read only memory (PEROM). The deviceis manufactured using Atmel’s high-density nonvolatile memory technology and iscompatible with the industry-standard 80C51 and 80C52 instruction set and pinout.The on-chip Flash allows the program memory to be reprogrammed in-system or by aconventional nonvolatile memory programmer. By combining a versatile 8-bit CPUwith Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputerwhich provides a highly-flexible and cost-effective solution to many embedded controlapplications.
上传时间: 2013-11-10
上传用户:1427796291