虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

memory-spra

  • lpc2292/lpc2294 pdf datasheet

    The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty. With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications. Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.

    标签: lpc datasheet 2292 2294

    上传时间: 2014-12-30

    上传用户:aysyzxzm

  • LPC1850 Cortex-M3内核微控制器数据手册

    The LPC1850/30/20/10 are ARM Cortex-M3 based microcontrollers for embeddedapplications. The ARM Cortex-M3 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC1850/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals. The ARMCortex-M3 CPU also includes an internal prefetch unit that supports speculativebranching.The LPC1850/30/20/10 include up to 200 kB of on-chip SRAM data memory, a quad SPIFlash Interface (SPIFI), a State Configuration Timer (SCT) subsystem, two High-speedUSB controllers, Ethernet, LCD, an external memory controller, and multiple digital andanalog peripherals.

    标签: Cortex-M 1850 LPC 内核微控制器

    上传时间: 2014-12-31

    上传用户:zhuoying119

  • LPC4300系列ARM双核微控制器产品数据手册

    The LPC4350/30/20/10 are ARM Cortex-M4 based microcontrollers for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB controllers,Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals

    标签: 4300 LPC ARM 双核微控制器

    上传时间: 2013-10-28

    上传用户:15501536189

  • LPC1300系列产品勘误数据手册

    On the LPC13xx, programming, erasure and re-programming of the on-chip flash can be performed using In-System Programming (ISP) via the UART serial port, and also, can be performed using In-Application Programming (IAP) calls directed by the end-user code. For In-System Programming (ISP) via the UART serial port, the ISP command handler (resides in the bootloader) allows erasure of one or more sector (s) of the on-chip flash memory.

    标签: 1300 LPC 勘误 数据手册

    上传时间: 2013-12-13

    上传用户:lmq0059

  • 时钟恢复设计_英文版

    Today in many applications such as network switches, routers, multi-computers,and processor-memory interfaces, the ability to integrate hundreds of multi-gigabit I/Os is desired to make better use of the rapidly advancing IC technology.

    标签: 时钟恢复 英文

    上传时间: 2013-10-30

    上传用户:ysjing

  • MAXQUSBJTAGOW评估板软件

    MAXQUSBJTAGOW评估板软件:关键特性 Easily Load and Debug Code Interface Provides In-Application Debugging Features Step-by-Step Execution Tracing Breakpointing by Code Address, Data Memory Address, or Register Access Data Memory View and Edit Supports Logic Levels from 1.1V to 3.6V Supports JTAG and 1-Wire Protocols Each Adapter Has Its Own Unique Serial ID, Allowing Multiple Adapters to be Connected Without COM Port Conflicts Has In-Field Upgradable Capability if Firmware Needs to be Upgraded Enclosure Protects from Shorts and ESD

    标签: MAXQUSBJTAGOW 评估板 软件

    上传时间: 2013-10-24

    上传用户:teddysha

  • MAXQUSBJTAGOW评估板软件

    MAXQUSBJTAGOW评估板软件:关键特性 Easily Load and Debug Code Interface Provides In-Application Debugging Features Step-by-Step Execution Tracing Breakpointing by Code Address, Data Memory Address, or Register Access Data Memory View and Edit Supports Logic Levels from 1.1V to 3.6V Supports JTAG and 1-Wire Protocols Each Adapter Has Its Own Unique Serial ID, Allowing Multiple Adapters to be Connected Without COM Port Conflicts Has In-Field Upgradable Capability if Firmware Needs to be Upgraded Enclosure Protects from Shorts and ESD

    标签: MAXQUSBJTAGOW 评估板 软件

    上传时间: 2013-11-23

    上传用户:truth12

  • 怎样使用Nios II处理器来构建多处理器系统

    怎样使用Nios II处理器来构建多处理器系统 Chapter 1. Creating Multiprocessor Nios II Systems Introduction to Nios II Multiprocessor Systems . . . . . . . . . . . . . . 1–1 Benefits of Hierarchical Multiprocessor Systems  . . . . . . . . . . . . . . . 1–2 Nios II Multiprocessor Systems . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 1–2 Multiprocessor Tutorial Prerequisites   . . . . . . . . . . .  . . . . . . . . . . . . 1–3 Hardware Designs for Peripheral Sharing   . . . . . . . . . . . .. . . . . . . . 1–3 Autonomous Multiprocessors   . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . 1–3 Multiprocessors that Share Peripherals . . . . . . . . . . . . . . . . . . . . . . 1–4 Sharing Peripherals in a Multiprocessor System   . . . . . . . . . . . . . . . . . 1–4 Sharing Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6 The Hardware Mutex Core  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–7 Sharing Peripherals   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1–8 Overlapping Address Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–8 Software Design Considerations for Multiple Processors . . .. . . . . 1–9 Program Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Boot Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1–13 Debugging Nios II Multiprocessor Designs  . . . . . . . . . . . . . . . .  1–15 Design Example: The Dining Philosophers’ Problem   . . . . .. . . 1–15 Hardware and Software Requirements . . . . . . . . . . . . . . . .. . . 1–16 Installation Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17 Creating the Hardware System   . . . . . . . . . . . . . . .. . . . . . 1–17 Getting Started with the multiprocessor_tutorial_start Design Example   1–17 Viewing a Philosopher System   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 1–18 Philosopher System Pipeline Bridges  . . . . . . . . . . . . . . . . . . . . . 1–19 Adding Philosopher Subsystems   . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–21 Connecting the Philosopher Subsystems  . . . . . . . . . . . . .. . . . . 1–22 Viewing the Complete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27 Generating and Compiling the System   . . . . . . . . . . . . . . . . . .. 1–28

    标签: Nios 处理器 多处理器

    上传时间: 2013-11-21

    上传用户:lo25643

  • 使用Nios II紧耦合存储器教程

                 使用Nios II紧耦合存储器教程 Chapter 1. Using Tightly Coupled Memory with the Nios II Processor Reasons for Using Tightly Coupled Memory  . . . . . . . . . . . . . . . . . . . . . . . 1–1 Tradeoffs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1 Guidelines for Using Tightly Coupled Memory . . . .. . . . . . . . 1–2 Hardware Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2 Software Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1–3 Locating Functions in Tightly Coupled Memory  . . . . . . . . . . . . . 1–3 Tightly Coupled Memory Interface   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Dual Port Memories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1–5 Building a Nios II System with Tightly Coupled Memory  . . . . . . . . . . . 1–5

    标签: Nios 耦合 存储器 教程

    上传时间: 2013-10-13

    上传用户:黄婷婷思密达

  • XAPP098 - Spartan FPGA低成本、高效率串行配置

    This application note shows how to achieve low-cost, efficient serial configuration for Spartan FPGA designs. The approachrecommended here takes advantage of unused resources in a design, thereby reducing the cost, part count, memory size,and board space associated with the serial configuration circuitry. As a result, neither processor nor PROM needs to be fullydedicated to performing Spartan configuration.In particular, information is provided on how the idle processing time of an on-board controller can be used to loadconfiguration data from an off-board source. As a result, it is possible to upgrade a Spartan design in the field by sending thebitstream over a network.

    标签: Spartan XAPP FPGA 098

    上传时间: 2013-11-01

    上传用户:wojiaohs