键盘任意输入一个稀疏矩阵A(m*n),采用三元组存储方法求其转置矩阵B(n*m),并用快速转置算法实现该操作。
上传时间: 2013-12-08
上传用户:lingzhichao
(1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A→sae (3) 、将魔王语言B(ehnxgz)B解释成人的语言.每个字母对应下列的语言.
上传时间: 2013-12-30
上传用户:ayfeixiao
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK 2. 下列说法中错误的是 ( ) A. Java语言是编译执行的 B. Java中使用了多进程技术 C. Java的单行注视以//开头 D. Java语言具有很高的安全性 3. 下面不属于Java语言特点的一项是( ) A. 安全性 B. 分布式 C. 移植性 D. 编译执行 4. 下列语句中,正确的项是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上传时间: 2017-01-04
上传用户:netwolf
一个基于GTK+的单词数值计算器,1、 按照规则计算单词的值,如果 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 26个字母(全部用大写)的值分别为 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26,如: WINJACK这个单词的值就为:W+I+N+J+A+C+K=23+9+14+1+3+11=71% HARDWORK=H+A+R+D+W+O+R+D=8+1+18+4+23+15+18+11=98% LOVE=L+O+V+E=12+15+22+5=54% LUCK=L+U+C+K=12+21+3+11=47% ATTITUDE= A+T+T+I+T+U+D+E=1+20+20+9+20+24+4+5=100% 2、对程序的界面布局参考如下图所示,在第一个单行文本框输入一个单词,点击“计算”按钮,按照以上算法计算出该单词的值。 3、如果在最下面的单行文本框输入一个文件路径,此文件每行记录一个单词,那么经过程序计算出各个单词的值,并把结果输出到当前目录下result.txt文件中。如果文件不存在,应该提示错误。
上传时间: 2014-01-11
上传用户:康郎
课程设计: 1.求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局。 2.设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 【基本要求】 1) 将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) 2) 分别采用动态和静态存储结构 3) 初始化:键盘输入字符集大小n、n个字符和n个权值,建立哈夫曼树; 4) 编码:利用建好的哈夫曼树生成哈夫曼编码; 5) 输出编码; 6) 设字符集及频度如下表: 字符 空格 A B C D E F G H I J K L M 频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 N O P Q R S T U V W X Y Z 频度 57 63 15 1 48 51 80 23 8 18 1 16 1
标签:
上传时间: 2017-04-24
上传用户:zhyiroy
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题 public class lianxi01 { public static void main(String[] args) { System.out.println("第1个月的兔子对数: 1"); System.out.println("第2个月的兔子对数: 1"); int f1 = 1, f2 = 1, f, M=24; for(int i=3; i<=M; i++) { f = f2; f2 = f1 + f2; f1 = f; System.out.println("第" + i +"个月的兔子对数: "+f2); } } } 【程序2】 题目:判断101-200之间有多少个素数,并输出所有素数。 程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除, 则表明此数不是素数,反之是素数。 public class lianxi02 { public static void main(String[] args) { int count = 0; for(int i=101; i<200; i+=2) { boolean b = false; for(int j=2; j<=Math.sqrt(i); j++) { if(i % j == 0) { b = false; break; } else { b = true; } } if(b == true) {count ++;System.out.println(i );} } System.out.println( "素数个数是: " + count); } } 【程序3】 题目:打印出所有的 "水仙花数 ",所谓 "水仙花数 "是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个 "水仙花数 ",因为153=1的三次方+5的三次方+3的三次方。 public class lianxi03 { public static void main(String[] args) { int b1, b2, b3;
上传时间: 2017-12-24
上传用户:Ariza
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789