近年来,语音识别研究大部分集中在算法设计和改进等方面,而随着半导体技术的高速发展,集成电路规模的不断增大与各种研发技术水平的不断提高,新的硬件平台的推出,语音识别实现平台有了更多的选择。语音识别技术在与DSP、FPGA、ASIC等器件为平台的嵌入式系统结合后,逐渐向实用化、小型化方向发展。 本课题通过对现有各种语音特征参数与孤立词语音识别模型进行研究的基础上,重点探索基于动态时间规整算法的DTW模型在孤立词语音识别领域的应用,并结合基于FPGA的SOPC系统,在嵌入式平台上实现具有较好精度与速度的孤立词语音识别系统。 本系统整体设计基于DE2开发平台,采用基于Nios II的SOPC技术。采用这种解决方案的优点是实现了片上系统,减少了系统的物理体积和总体功耗;同时系统控制核心都在FPGA内部实现,可以极为方便地更新和升级系统,大大地提高了系统的通用性和可维护性。 此外,由于本系统需要大量的高速数据运算,在设计中作者充分利用了Cyclone II芯片的丰富的硬件乘法器,实现了语音信号的端点检测模块,FFT快速傅立叶变换模块,DCT离散余弦变换模块等硬件设计模块。为了提高系统的整体性能,作者充分利用了FPGA的高速并行的优势,以及配套开发环境中的Avalon总线自定义硬件外设,使系统处理数字信号的能力大大提高,其性能优于传统的微控制器和普通DSP芯片。 本论文主要包含了以下几个方面: (1)结合ALTERA CYCLONE II芯片的特点,确定了基于FPGA语音识别系统的总体设计,在此基础上进行了系统的软硬件的选择和设计。 (2)自主设计了纯硬件描述语言的驱动电路设计,完成了高速语音采集的工作,并且对存储数据芯片SRAM中的原始语音数据进行提取导入MATLAB平台测试数据的正确性。整个程序测试的方式对系统的模块测试起到重要的作用。 (3)完成高速定点256点的FFT模块的设计,此模块是系统成败的关键,实现高速实时的运算。 (4)结合SOPC的特性,设计了人机友好接口,如LCD显示屏的提示反馈信息等等,以及利用ALTERA提供的一些驱动接口设计完成用户定制的系统。 (5)进行了整体系统测试,系统可以较稳定地实现实时处理的目的,具有一定的市场潜在价值。
上传时间: 2013-05-23
上传用户:ABCD_ABCD
近年来,图像处理与识别技术得到了迅速的发展。人们已经充分认识到图像处理和识别技术是认识世界、改造世界的重要手段。目前,图像识别技术已应用到很多领域,渗入到各行各业,在医学、公安、交通、工业等领域具有广阔的应用前景。 这篇论文介绍了一种基于DSP+FPGA构架的实时图像识别系统。DSP作为图像识别模块的核心,负责图像识别算法的实现;FPGA作为图像采集模块的核心,负责图像的采集,并且完成预处理工作。图像识别算法的运算量大,并且控制复杂,对系统的性能要求很高。DSP的特殊结构和优良性能很好地满足了系统的需要,而FPGA的高速性和灵活性也保证了系统实时性,并且简化了外围电路,减少了系统设计难度。 系统使用模板匹配和神经网络算法对数字0~9进行识别。模板匹配一般适用于识别规范化的数字、字符等小型字符集(特别是同一字体的字符集)。由于结构比较简单,系统处理能力强,模板匹配的识别速度快并且识别率高,取得很好的效果。神经网络所具有的分布式存储、高容错性、自组织和自学习功能,使其对图像识别问题显示出极大的优越性。 研究表明,在DSP+FPGA的构架上实现的图像识别系统,具有结构灵活、通用性强的特点,适用于模块化设计,有利于提高算法的效率。系统可以充分发挥和结合DSP和FPGA的优势,准确快速地实现图像识别。通过软、硬件的灵活组合,系统可以实现图像处理大部分的相关功能,使之能够运用到工业视觉检测、汽车牌照识别等系统中。
上传时间: 2013-06-18
上传用户:com1com2
人脸识别技术作为生物识别技术之一,是模式识别在图像领域中的具体运用,其应用前景非常广阔,可以应用到身份证件的鉴别、自动门禁控制系统、银行取款机、家庭安全,图片检索等领域。 人脸识别系统主要分为人脸检测定位,特征提取和人脸分类三部分。人脸的检测和定位,即从输入的图像中找到人脸及人脸存在的位置,并将人脸从背景中分离出来。在特征提取部分,先对原始人脸数据进行特征提取,之后原始数据由维数较少的有效特征数据表示并存储在数据库中,接下来进行人脸分类,在识别待测人脸图像时,将待测图像的特征数据与数据库中存储数据相比对,判断是否为库中的某一人,从而实现自动识别人脸的目的。 在过去的十年里,人脸识别技术一直是图像处理领域里具有挑战性的课题,随着研究的深入,许多人脸检测及识别算法被提出来。其中基于主成分分析的Eigenface的算法及其变形已经成为测试人脸识别系统性能的基准算法;同时Adaboost人脸检测算法,在PC上基本可以达到实时,在嵌入式产品广泛应用的今天,只有让人脸识别算法在嵌入式平台上实现,才能获得更广阔的应用,本文研究了在嵌入式平台上Adaboost人脸检测算法的性能。 嵌入式是后PC时代的一个亮点,目前已经应用在社会生活的方方面面。嵌入式产品的开发平台分为包括很多,如:DSP,ARM,PowerPC等等。本文采用的ARM9作为嵌入式开发平台,研究人脸识别在ARM平台的性能,为实用的嵌入式人脸识别系统的设计提供参考。 本文从PC平台的软件实现入手,分别实现了PC平台下的AdaBoost人脸检测算法和PCA人脸识别算法,分析了现象及结果,接下来搭建了基于ARM嵌入式系统的硬件平台,对AdaBoost人脸检测算法进行了硬件平台的移植,并得出相应实验效果。
上传时间: 2013-05-31
上传用户:saharawalker
基于小波变换和神经网络理论,对非稳定、大信噪比(SNR)变化的通信信号进行有效的特征提取和分类,实现了通信信号调制方式的分类识别.首先,采用基于多分辨分析框架的Mallat快速算法提取离散细节作为特征采,实验得出db3小波非常适合作为特征提取小波,用小波变换大大压缩了通信信号特征矢量,提取的信号特征矢量64点;然后依据神经网络理论,分别采用BP网络作为分类器对通信信号调制识别分类.从计算机模拟实验结果可知,该方法能很好地完成通信信号调制识别分类任务,使识别正确率得到了明显改善,同时降低了识别分类过程的复杂度,并且为通信信号调制识别的DSP实现提供了快速计算的理论基础.其次,介绍了TMS320LF2407 DSP和FPGA的结构原理,并在此基础上设计了数字信号处理板和制作调试电路板.最后,用汇编和C语言编制A/D程序、串口通信程序和应用程序,并在信号处理板上调试和运行.
上传时间: 2013-07-23
上传用户:731140412
生物识别技术代表了未来身份验证技术的发展方向,而指纹识别技术又是最可靠、最有效的生物识别技术之一。目前,指纹识别技术是优于其它生物识别技术的身份鉴别方法。这是因为人的指纹各不相同、终生基本不变的特点已经得到公认,特别是现有的指纹识别算法已达到识别迅速、准确可靠的水平,是完全可以商业化的生物识别技术。 传统的指纹识别系统多是基于PC平台,这种系统将指纹图像处理和指纹匹配甚至指纹采集控制都放在PC平台上,在获得了较高速度和开发效率的同时,缺点也是显而易见的,其体积庞大,成本较高。而已有的嵌入式指纹识别系统多是基于单片机和DSP的,不是在运算速度上受到硬件限制,就是在系统的扩展性、可维护性及用户交互上有诸多不足。 近年来指纹识别应用的普及对自动指纹识别系统的便携性和易用性提出了更高的要求,指纹识别技术正向着小型化和嵌入式的方向发展。在微电子领域,以ARM、DSP、FPGA为代表的嵌入式微处理器的性能飞速提高,为构建嵌入式系统提供了硬件保证。 ARM是当前最为流行的32位RISC处理器架构,目前ARM占RISC处理器市场的七成左右。三星公司的S3C2410是基于ARM920T内核的通用32位微处理器,它具有高性能和低功耗的特性,被设计用于手持设备和通用嵌入式系统。 嵌入式系统对操作系统和其上运行的软件有特别的要求。针对本课题所采用的ARM硬件平台,详细介绍了嵌入式操作系统Arm-Linux的移植。分别说明了交叉编译工具链的安装、引导装载器的移植和Linux内核的裁减和交叉编译过程。为了运行应用程序,还介绍了文件系统的构建。 指纹识别系统需要指纹采集设备。FPS200是Veridicom公司推出的第三代半导体指纹传感器,是一款专为嵌入式系统设计的高性能、低成本、低功耗的电容式固态指纹传感器。本文详细阐述了基于FPS200的USB接口指纹采集卡的设计与实现。 指纹图像处理与匹配是整个系统的重要环节,论文介绍了图像处理与匹配的一般概念,并提出了新的指纹匹配方法。指纹匹配是自动指纹识别中的一个难点。现有的指纹匹配方法大致可以归结为图形匹配和人工神经网络匹配两大类,本文提出的基于线段的特征点匹配算法属于图形匹配。 嵌入式系统需要完善的软件支持。随着嵌入式技术的飞速发展,用户交互界面也由传统的字符界面向图形界面转变,图形用户界面系统得到了长足的发展。MiniGUI 是一个非常适合于工业控制实时系统以及嵌入式系统的可定制的、小巧的图形用户界面支持系统。本文介绍了基于MiniGUI的可视化指纹识别软件设计。 综上所述,本文针对特定硬件条件,构建了定制的嵌入式操作系统;设计了支持USB数据传输的指纹采集卡;指纹图像的滤波、提取特征和指纹特征匹配均针对嵌入式系统的实际情况进行了优化;利用MiniGUI图形支持库完成了界面美观友好的可视化指纹识别程序。系统具有安全可靠、易于扩展、性价比高等优点。
上传时间: 2013-08-02
上传用户:小儒尼尼奥
基于彩色路径识别的视觉导航方法是当前自动导航小车领域的研究热点和方向。视觉导航是指根据地面路径和被控对象之间的位置偏差控制其运行的方向,因此,地面彩色路径图像的摄取及其识别处理就成为视觉导航系统中的基础和关键。在当前的视觉导航系统设计中,图像处理的硬件平台都是基于通用微处理器,嵌入式微处理器或者DSP进行设计的。这些处理器一个共同的特点就是数据串行处理,而图像处理过程涉及大量的并行处理操作,因此传统的串行处理方式满足不了图像处理的实时性要求。 鉴于微处理器这方面的不足,作者提出一种使用FPGA实现图像识别的并行处理方案,并据此设计一个智能图像传感器。该传感器采用先进的FPGA技术,将图像采集及其显示,路径的识别处理以及通信控制等模块集成在一个芯片上,形成一个片上系统(SOC)。其主要功能是对所采集的彩色路径图像进行识别处理,获得彩色路径的坐标及其方向角,并将处理结果发送给上位机,为自动导航提供控制依据。 本文将彩色路径的识别处理过程划分为三个阶段,第一阶段为颜色聚类识别,以获得二值路径图像,第二阶段为数学形态学运算,用于对第一阶段中获得的二值图像进行去斑处理,第三阶段为路径中心线的定位及其方向角的测量。图像传感器与上位机的通信采用异步串行方式,由于上位机需要控制该传感器执行多种任务,作者定义一种基于异步串行通信的应用层协议,用于上位机对传感器的控制。在图像的显示中,为了弥补图像采集的速率和VGA显示速率的不匹配,作者提出一种基于单端口存储器的图像帧缓冲机制,通过VGA接口将采集的图像实时地显示出来。 根据上述思想,作者完成了系统的硬件电路设计,并对整个系统进行了现场调试。调试结果表明,传感器系统的各个模块都能正常工作,FPGA中的数字逻辑电路能够实时地将路径从图像中准确地识别出来,.充分体现了FPGA对路径图像的高速处理优势,达到了设计预期目标,在一定程度上丰富了路径图像识别处理的技术和方法。
上传时间: 2013-04-24
上传用户:ghostparker
随着交通工具的迅猛发展,智能交通系统(Intelligent TransportationSystems,简称ITS)在交通管理中受到广泛的关注。而在ITS中,车牌识别(LicensePlate Recognition,简称LPR)是其核心技术。车牌识别系统主要由数据采集和车牌识别算法两个部分组成。由于车牌清晰程度、摄像机性能、气候条件等因素的影响,牌照中的字符可能出现不清楚、扭曲、缺损或污迹干扰,这都给识别造成一定难度。因此,在复杂背景中快速准确地进行车牌定位成为车牌识别系统的难点。 本文研究和设计了一种集图象采集,图象识别,图象传输等于一体的实时嵌入式系统。该平台包括硬件系统设计与应用程序开发两个方面,充分利用TI公司的C6000系列DSP强大的并行运算能力、以及FPGA的灵活时序逻辑控制技术,从硬件方面实现系统的高速运行。 本文的主要工作有两部分组成,具体如下: (1) 在硬件设计方面:实现由A/D、电源、FPGA、DSP以及SDRAM和FLASH所组成的车牌识别系统;设计并完成系统的原理图和印制板图;完成电路板调试,以及完成FPGA.在高速图像采集中的veriIog应用程序开发。 (2) 在软件开发方面:完成Philips公司的SAA7113H的配置代码开发,以及DSP底层的部分驱动程序开发。 该系统能够实现25帧每秒的数字视频流图像数据的输出,并由FPGA负责完成一幅720×572数据量的图像采集。DSP负责系统的嵌入式操作,包括系统的控制和车牌识别算法的实现。 目前,嵌入式车牌识别系统硬件平台已经搭建成功,系统软件代码程序也已经开发完成。本系统能够实现高速图像采集、嵌入式操作与车牌识别算法、UART数据通信等功能,具有速度快、稳定性高、体积小、功耗低等特点,为车牌识别算法提供一个较好的验证平台。
上传时间: 2013-07-30
上传用户:gdgzhym
· 摘要: 提出了一种基于DSP和FPGA的自动报靶系统的设计方法,主要阐述了系统的软硬件设计方法,并提出用模糊聚类分析识别靶心.对比其它设计方法.该方法适应性强、灵活性高,设计调试方便.
上传时间: 2013-04-24
上传用户:whenfly
·详细说明:语音识别:语音矢量化及算法及与原文件的矢量对比功能源代码文件列表: BShvoice ........\Debug ........\dllSudx.h ........\dllSudx.lib ........\SHvoice.cpp ........\SHvoice.dsp ......
上传时间: 2013-07-10
上传用户:博雅abcd
·详细说明:语音识别配套的VQ及DHMM模型训练程序,C语言,已经定点化,可直接移植到8位MCU或16位DSP中。与目前市面的语音识别玩具的算法基本一致,非常实用,仅供大家参考,别去抢人家饭碗才好.
上传时间: 2013-07-31
上传用户:84425894