虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

clocks

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-13

    上传用户:瓦力瓦力hong

  • XAPP1065 - 利用Spartan-6 FPGA设计扩频时钟发生器

      Consumer display applications commonly use high-speed LVDS interfaces to transfer videodata. Spread-spectrum clocking can be used to address electromagnetic compatibility (EMC)issues within these consumer devices. This application note uses Spartan®-6 FPGAs togenerate spread-spectrum clocks using the DCM_CLKGEN primitive.

    标签: Spartan XAPP 1065 FPGA

    上传时间: 2014-12-28

    上传用户:yan2267246

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-21

    上传用户:wxqman

  • XAPP1065 - 利用Spartan-6 FPGA设计扩频时钟发生器

      Consumer display applications commonly use high-speed LVDS interfaces to transfer videodata. Spread-spectrum clocking can be used to address electromagnetic compatibility (EMC)issues within these consumer devices. This application note uses Spartan®-6 FPGAs togenerate spread-spectrum clocks using the DCM_CLKGEN primitive.

    标签: Spartan XAPP 1065 FPGA

    上传时间: 2013-11-01

    上传用户:hjkhjk

  • XAPP708 -133MHz PCI-X到128MB DDR小型DIMM存储器桥

      The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.

    标签: PCI-X XAPP DIMM 708

    上传时间: 2013-11-24

    上传用户:18707733937

  • Pipeline synchronization is a simple, low-cost, highbandwidth,highreliability solution to interfaces

    Pipeline synchronization is a simple, low-cost, highbandwidth,highreliability solution to interfaces between synchronous and asynchronous systems, or between synchronous systems operating from different clocks.

    标签: synchronization highreliability highbandwidth interfaces

    上传时间: 2014-12-05

    上传用户:l254587896

  • There are many different (and often confusing) terms associated with clock-based devices. This appl

    There are many different (and often confusing) terms associated with clock-based devices. This application note attempts to clarify these terms, and hence serves as a comprehensive reference on clock terminology. This application note can be divided into two sections. The first section describes and distinguishes between various clock sources available today. The second section defines and distinguishes between various parameters used to describe clocks. This section also provides methods of measuring some of these parameters.

    标签: clock-based associated different confusing

    上传时间: 2015-12-02

    上传用户:sssl

  • The P89LPC938 is a single-chip microcontroller, available in low cost packages, based on a high per

    The P89LPC938 is a single-chip microcontroller, available in low cost packages, based on a high performance processor architecture that executes instructions in two to four clocks, six times the rate of standard 80C51 devices. Many system-level functions have been incorporated into the P89LPC938 in order to reduce component count, board space, and system cost.

    标签: microcontroller single-chip available packages

    上传时间: 2013-12-04

    上传用户:远远ssad

  • This is brief doccumentation done on the clock syncronasation in distributed systems.ths includes al

    This is brief doccumentation done on the clock syncronasation in distributed systems.ths includes algorithem for physical and logical clocks and mutual exclusion.

    标签: doccumentation syncronasation distributed includes

    上传时间: 2017-03-21

    上传用户:plsee

  • This paper will discuss the design of an asynchronous FIFO,Asynchronous FIFOs are widely used in the

    This paper will discuss the design of an asynchronous FIFO,Asynchronous FIFOs are widely used in the computer networking industry to receive data at a particular frequency and transmit them at another frequency. An asynchronous FIFO has two different clocks: one for read and one for write.

    标签: Asynchronous asynchronous the discuss

    上传时间: 2013-12-09

    上传用户:Thuan