Recent advances in wireless communication technologies have had a transforma- tive impact on society and have directly contributed to several economic and social aspects of daily life. Increasingly, the untethered exchange of information between devices is becoming a prime requirement for further progress, which is placing an ever greater demand on wireless bandwidth. The ultra wideband (UWB) system marks a major milestone in this progress. Since 2002, when the FCC allowed the unlicensed use of low-power, UWB radio signals in the 3.1–10.6GHz frequency band, there has been significant synergistic advance in this technology at the cir- cuits, architectural and communication systems levels. This technology allows for devices to communicate wirelessly, while coexisting with other users by ensuring that its power density is sufficiently low so that it is perceived as noise to other users.
上传时间: 2020-06-01
上传用户:shancjb
In the two years since this book was first published, ultra wideband (UWB) has advanced and consolidated as a technology, and many more people are aware of the possibilities for this exciting technology. We too have expanded and consolidated materials in this second edition in the hope that ‘Ultra Wideband: Signals and Systems in Communication Engineering’ will continue to prove a useful tool for many students and engineers to come to an understanding of the basic technologies for UWB.
标签: Wideband Signals Systems Ultra and
上传时间: 2020-06-01
上传用户:shancjb
In this book we focus on the basic signal processing that underlies current and future ultra wideband systems. By looking at signal processing in this way we hope this text will be useful even as UWB applications mature and change or regulations regarding ultra wideband systems are modified. The current UWB field is extremely dynamic, with new techniques and ideas being presented at every communications and signal-processing conference. The basic signal-processing techniques presented in this text though will not change for some time to come. Thus, we have taken a somewhat theoretical approach, which we believe is longer lasting and more useful to the reader in the long term than an up-to-the-minute summary that is out of date as soon as it is published.
标签: Wideband Signals Systems Ultra 1st
上传时间: 2020-06-01
上传用户:shancjb
现代通信系统对带宽和数据速率的要求越来越高,超宽带(Ultra-wideband,UWB)通信以其传输速率高、空间容量大、成本低、功耗低的优点,成为解决企业、家庭、公共场所等高速因特网接入的需求与越来越拥挤的频率资源分配之间的矛盾的技术手段。 论文主要围绕两方面展开分析:一是介绍用于UWB无载波脉冲调制及直接序列码分多址调制(DS-CDMA)的新型脉冲,即Hermite正交脉冲,并且分析了这种构建UWB多元通信和多用户通信的系统性能。二是分析了UWB的多带频分复用物理层提案(MBOA)的调制技术,并在FPGA上实现了调制模块。正交Hermite脉冲集被提出用于UWB的M元双正交调制系统,获得高数据速率。调整脉冲的脉宽因子和中心频率能使脉冲满足FCC的频谱要求。M元双正交调制的接收机需要M/2个相关器,远比M元正交调制所需的相关器数量少。误码率一定时,维数M的增加可获得高的比特率和低的信噪比。虽然高阶的Hermite脉冲易受抖动时延的影响,但当抖动时延范围小于0.02ns时,其影响较为不明显。本文认为1~8阶的Hermite脉冲皆可用,可构成16元双正交系统。 正交Hermite脉冲集也可以构造UWB多用户系统。各用户的信息用不同的Hermite脉冲同时传输,其多用户的误比特率上限低于高斯单脉冲构成的PPM多用户系统的误比特率,所以其系统性能更优。正交Hermite脉冲还可以用于UWB的DS-CDMA调制,在8个脉冲可用的情况下,最多可容64个用户同时通信。 基于MBOA提出的UWB物理层协议,本文用Verilog硬件语言实现了调制与解调结构,并用Modelsim做了时序验证。用Verilog编程实现的输出数据与Matlab生成的UWB建模的输出结果一致。为了达到UWBMB-OFDM系统的FFT处理器的要求,一个混和基多通道流水线的FFT算法结构被提出。其有效的实现方法也被提出。这种结构采用多通道以获得高的数据吞吐量。此外,它用于存储和复数乘法器的硬件损耗相比其他的FFT处理器是最少的。高基的FFT蝶算减少了复数乘法器的数量。在132MHz的工作频率下,整个128点FFT变换在此结构模式下只需要242.4ns,满足了MBOA的要求。
上传时间: 2013-07-29
上传用户:TI初学者
The MAX2870 Ultra-wideband phase-locked loop (PLL) and voltagecontrol oscillator (VCO) can operate in both integer-N and fractional-Nmodes, similar to the Analog Devices ADF4350 wideband synthesizer.This application note compares the MAX2870 and ADF4350 registers andloop filter design in detail. Users who already familiar with ADF4350 canuse this application note as a quick design reference.
上传时间: 2014-12-23
上传用户:变形金刚
Emerging technologies such as WiFi and WiMAX are profoundly changing the landscape of wireless broadband. As we evolve into future generation wireless networks, a primary challenge is the support of high data rate, integrated multi- media type traffic over a unified platform. Due to its inherent advantages in high-speed communication, orthogonal frequency division multiplexing (OFDM) has become the modem of choice for a number of high profile wireless systems (e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
标签: Broadband Wireless Networks
上传时间: 2020-05-26
上传用户:shancjb
Emerging technologies such as WiFi and WiMAX are profoundly changing the landscape of wireless broadband. As we evolve into future generation wireless networks, a primary challenge is the support of high data rate, integrated multi- media type traffic over a unified platform. Due to its inherent advantages in high-speed communication, orthogonal frequency division multiplexing (OFDM) has become the modem of choice for a number of high profile wireless systems (e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
标签: OFDM-Based Broadband Networks Wireless
上传时间: 2020-05-31
上传用户:shancjb
Ultra-wideband (UWB) technology enables high data-rate short-range communica- tion, in excess of hundredmegabit-per-secondsand up to multi-gigabit-per-seconds, over a wide spectrum of frequencies, while keeping power consumption at low lev- els. This low power operation results in a less-interfering co-existence with other existed communication technologies (e.g., UNII bands). In addition to carrying a huge amount of data over a distance of up to 230 feet at very low power (less than 0.5mW), the UWB signal has the ability to penetrate through the doors and other obstacles that tend to reflect signals at more limited bandwidths and higher power densities.
标签: Silicon-Based Front-Ends RF
上传时间: 2020-06-01
上传用户:shancjb
Ultra-widebandradiotechnology_overviewandfutureresearch
标签: Ultra-widebandradiotechnology_ove rviewandfutureresearch
上传时间: 2015-04-12
上传用户:ainimao
Ultra-widebandcommunications-Anideawhosetimehascome
标签: Ultra-widebandcommunications-Anid eawhosetimehascome
上传时间: 2014-10-27
上传用户:BOBOniu