利用最新的嵌入式开发工具EDK,在FPGA 中完成对PDIUSBD12 的硬件定制和固件编程,从而在FPGA 中实现U S B 控制器, 并最终完成U S B 的枚举过程、驱动程序的开发和简单的应用。
上传时间: 2013-11-25
上传用户:fnhhs
基于J2EE技术的网上商城系统构建 本课题以国家8 6 3引导项目 , 暨新疆自治区高新计划项目 — 广汇美居物流园网上 商城系统为背景。旨 在利用先进的系统建模思想以及当前流行的We b编程技术,将迭 代式、以用户需求为驱动和以构架为中心的R U P统一开发过程的系统建模思想应用到 电子商务系统模型的需求分析和设计的各个阶段, 完整地实现整个系统的建模过程。 在 此基础上对系统实现的关键技术问题:数据库的并发访问,MV C模式的应用以及统计 信息的图表显示等关键技术进行了具体的分析和实现。 本文利用I nt e 川 e 吸 的强大功能,借鉴国内外电子商务方面的相关经验,分析虚拟店 铺,网上商城及网上拍卖的功能结构和实现方式, 为广汇美居物流园的商户搭建网上虚 拟店铺,网上商城及网上商品竟拍系统平台。该系统经过近半年的使用,实际应用效果 较好。采用的R U P开发方法和M V c的设计模式使系统的灵活性和可扩展性大大增强。
上传时间: 2014-12-03
上传用户:edisonfather
%radon transform clear all % N=800 n=1:N fs=200 t=n/fs x1=exp(j*2*pi*(5*t+0.5*5*t.^2)) x2=exp(j*2*pi*(5*t+0.5*15*t.^2)) x=x1+x2 %N=length(x) % ambifunb(x ) %*****************************************RAT naf=ambifunb(x) htl(abs(naf)) % [wh,rho,theta]=htl(abs(naf)) colormap([0,0,0]) % xlabel( 极半径 ) % ylabel( 角度 ) %**************************************%找出峰值点的坐标,计算初始频率和调频斜率(正确) %找出峰值点的坐标 b=max(max(wh)) [u,a]=find(wh>=0.8*b)
上传时间: 2014-10-27
上传用户:Yukiseop
The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produces a factorization of P*A into the product L*U where P is a permutation matrix, and L and U are lower and upper triangular, respectively. The functions in this package are accurate, but they are far slower than their MATLAB equivalents (x=A\b, [L,U,p]=lu(A), and so on). They are presented here merely to illustrate and educate. "Real" production code should use backslash and lu, not this package.
标签: illustrates elimination Gaussian pivoting
上传时间: 2016-11-09
上传用户:wang5829
The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produces a factorization of P*A into the product L*U where P is a permutation matrix, and L and U are lower and upper triangular, respectively. The functions in this package are accurate, but they are far slower than their MATLAB equivalents (x=A\b, [L,U,p]=lu(A), and so on). They are presented here merely to illustrate and educate. "Real" production code should use backslash and lu, not this package.
标签: illustrates elimination Gaussian pivoting
上传时间: 2014-01-21
上传用户:lxm
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-18
上传用户:时代电子小智
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-13
上传用户:qlpqlq
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:wab1981
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-11-25
上传用户:wcl168881111111
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:heart520beat