虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

P<b>C</b>F

  • c语言编程软件vc6.0中文绿色版_vc6.0官方下载

    c语言编程软件vc6.0中文绿色版是一款免安装中文软件,点击直接使用,无需安装。 vc6.0简介: 1、vc6.0是windows环境下最主要的应用开发系统之一。 2、是C++语言的集成开发环境 3、vc6.0与Win32紧密相连 4、强大的调试功能为大型复杂软件的开发提供了有效的排错手段 c语言编程软件vc6.0中文绿色版使用流程: 1、下载VC6.0完整版到电脑,解压 2、点击ShortCut.exe,这时在同一文件夹下会生成VC6的快捷图标。 3、点击VC6图标,这时就可以使用了。 相关资料:vc6.0使用教程

    标签: 6.0 vc c语言 编程软件

    上传时间: 2013-10-08

    上传用户:Togetherheronce

  • AVR单片机数码管秒表显示

    #include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,

    标签: AVR 单片机 数码管

    上传时间: 2013-10-21

    上传用户:13788529953

  • 51单片机c语言超强学习资料

    单片机c语言学习和单片机制作资料: 函数的使用和熟悉 实例3:用单片机控制第一个灯亮 实例4:用单片机控制一个灯闪烁:认识单片机的工作频率 实例5:将 P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能 实例6:使用P3口流水点亮8位LED 实例7:通过对P3口地址的操作流水点亮8位LED 实例8:用不同数据类型控制灯闪烁时间 实例9:用P0口、P1 口分别显示加法和减法运算结果 实例10:用P0、P1口显示乘法运算结果 实例11:用P1、P0口显示除法运算结果 实例12:用自增运算控制P0口8位LED流水花样 实例13:用P0口显示逻辑"与"运算结果 实例14:用P0口显示条件运算结果 实例15:用P0口显示按位"异或"运算结果 实例16:用P0显示左移运算结果 实例17:"万能逻辑电路"实验 实例18:用右移运算流水点亮P1口8位LED 实例19:用if语句控制P0口8位LED的流水方向 实例20:用swtich语句的控制P0口8位LED的点亮状态 实例21:用for语句控制蜂鸣器鸣笛次数 实例22:用while语句控制LED 实例23:用do-while语句控制P0口8位LED流水点亮 实例24:用字符型数组控制P0口8位LED流水点亮 实例25: 用P0口显示字符串常量 实例26:用P0 口显示指针运算结果 实例27:用指针数组控制P0口8位LED流水点亮 实例28:用数组的指针控制P0 口8 位LED流水点亮 实例29:用P0 、P1口显示整型函数返回值 实例30:用有参函数控制P0口8位LED流水速度 实例31:用数组作函数参数控制流水花样 实例32:用指针作函数参数控制P0口8位LED流水点亮 实例33:用函数型指针控制P1口灯花样 实例34:用指针数组作为函数的参数显示多个字符串

    标签: 51单片机 c语言

    上传时间: 2013-10-21

    上传用户:llandlu

  • 单片机C语言中LCD菜单的方法实现

    由于C语言的结构性和模块化,采用C语言编写的程序容易阅读和维护,还有很好的可移植性。本文介绍一种用C语言实现的LCD多级菜单的方法,该方法已成功应用在煤矿安全监测设备上。 1、硬件环境及LCD菜单实现的功能 2、程序设计 3、结语

    标签: LCD 单片机 C语言 菜单

    上传时间: 2014-01-08

    上传用户:gonuiln

  • 基于C8051F060单片机控制AD9833实现FSK调制

    引言 在数字信息传输中,基带数字信号通常要经过调制器调制,将频率搬移到适合信息传输的频段上。2FSK就是用数字信号去调制载波的频率(移频键控),由于它具有方法简单、易于实现、抗噪声和抗衰落性能较强等优点,因此在现代数字通信系统的低、中速数据传输中得到了广泛应用。 直接数字频率合成技术(DDS)将先进的数字处理技术与方法引入信号合成领域。DDS器件采用高速数字电路和高速D/A转换技术,具备频率转换时间短、频率分辨率高、频率稳定度高、输出信号频率和相位可快速程控切换等优点,可以实现对信号的全数字式调制。

    标签: C8051F060 9833 FSK AD

    上传时间: 2014-12-27

    上传用户:1427796291

  • AVR单片机在线编程下载线电路图,PCB图及HEX文件

    AVR单片机在线编程下载线电路图,PCB图及HEX文件   什么是AVR单片机?AVR单片机是什么意思?    

    标签: AVR PCB HEX 单片机

    上传时间: 2013-11-23

    上传用户:笨小孩

  • arm指令集(1)

    arm指令集(1)  ARM跳转指令可以从当前指令向前或向后的32MB地址空间跳转。这类跳转指令有以下4种。   (1)B 跳4专指令   B〔条件) (地址)   B指令属于ARM指令集,是最简单的分支指令。一旦遇到一个B指令,ARM处理器将立即跳转到给定的地址,从那里继续执行。注意:存储在分支指令中的实际值是相对当前R15的值的一个偏移量,而不是一个绝对地址。它的值由汇编器来计算,是24位有符号数,左移两位后有符号扩展为32位,表示的有效偏移位为26位(+/- 32 MB)。   (2)BL 带返回的跳转指令   BI,〔条件) (地址)   BL指令也属于ARM指令集,是另一个分支指令。就在分支之前,在寄存器R14中装载上R15的内容,因此可以重新装载R14到R15中来返回到这个分支之后的那个指令处执行,它是子例程的一个基本但强力的实现。   (3)BLX 带返回和状态切换的跳转指令   BLX <地址>   BLX指令有两种格式,第1种格式的BLX指令记作BLX(1)。BLX(1)从ARM指令集跳转到指令中指定的目标地址,并将程序状态切换到Thumb状态,该指令同时将PC寄存器的内容复制到LR寄存器中。   BLX(1)指令属于无条件执行的指令。   第2种格式的BLX指令记作BLX(2)。BLX(2)指令从ARM指令集跳转到指令中指定的目标地址,目标地址的指令可以是ARM指令,也可以是Thumb指令。目标地址放在指令中的寄存器<dest>中,该地址的bit[0]值为0,目标地址处的指令类型由CPSR中的T位决定。该指令同时将PC寄存器的内容复制到LR寄存器中。   (4)BX 带状态切换的跳转指令   BX(条件) (dest)   BX指令跳转到指令中指定的目标地址,目标地址处的指令可以是ARM指令,也可以是Thumb指令。目标地址值为指令的值和0xFl·FFFFFF做“与”操作的结果,目标地址处的指令类型由寄存器决定。

    标签: arm 指令集

    上传时间: 2014-12-27

    上传用户:laomv123

  • PIC单片机的C语言编程教材

    PIC单片机的C语言编程教材 用C 语言来开发单片机系统软件最大的好处是编写代码效率高、软件调试直观、维护升级方便、代码的重复利用率高、便于跨平台的代码移植等等,因此C 语言编程在单片系统设计中已得到越来越广泛的运用。针对PIC 单片机的软件开发,同样可以用C 语言实现。

    标签: PIC C语言编程 单片机 教材

    上传时间: 2013-11-11

    上传用户:xdqm

  • 汇编+保护模式+教程

    九.输入/输出保护为了支持多任务,80386不仅要有效地实现任务隔离,而且还要有效地控制各任务的输入/输出,避免输入/输出冲突。本文将介绍输入输出保护。 这里下载本文源代码。 <一>输入/输出保护80386采用I/O特权级IPOL和I/O许可位图的方法来控制输入/输出,实现输入/输出保护。 1.I/O敏感指令输入输出特权级(I/O Privilege Level)规定了可以执行所有与I/O相关的指令和访问I/O空间中所有地址的最外层特权级。IOPL的值在如下图所示的标志寄存器中。 标  志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O许可位图规定了I/O空间中的哪些地址可以由在任何特权级执行的程序所访问。I/O许可位图在任务状态段TSS中。 I/O敏感指令 指令 功能 保护方式下的执行条件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 设置EFLAGS中的IF位 CPL<=IOPL IN 从I/O地址读出数据 CPL<=IOPL或I/O位图许可 INS 从I/O地址读出字符串 CPL<=IOPL或I/O位图许可 OUT 向I/O地址写数据 CPL<=IOPL或I/O位图许可 OUTS 向I/O地址写字符串 CPL<=IOPL或I/O位图许可 上表所列指令称为I/O敏感指令,由于这些指令与I/O有关,并且只有在满足所列条件时才可以执行,所以把它们称为I/O敏感指令。从表中可见,当前特权级不在I/O特权级外层时,可以正常执行所列的全部I/O敏感指令;当特权级在I/O特权级外层时,执行CLI和STI指令将引起通用保护异常,而其它四条指令是否能够被执行要根据访问的I/O地址及I/O许可位图情况而定(在下面论述),如果条件不满足而执行,那么将引起出错码为0的通用保护异常。 由于每个任务使用各自的EFLAGS值和拥有自己的TSS,所以每个任务可以有不同的IOPL,并且可以定义不同的I/O许可位图。注意,这些I/O敏感指令在实模式下总是可执行的。 2.I/O许可位图如果只用IOPL限制I/O指令的执行是很不方便的,不能满足实际要求需要。因为这样做会使得在特权级3执行的应用程序要么可访问所有I/O地址,要么不可访问所有I/O地址。实际需要与此刚好相反,只允许任务甲的应用程序访问部分I/O地址,只允许任务乙的应用程序访问另一部分I/O地址,以避免任务甲和任务乙在访问I/O地址时发生冲突,从而避免任务甲和任务乙使用使用独享设备时发生冲突。 因此,在IOPL的基础上又采用了I/O许可位图。I/O许可位图由二进制位串组成。位串中的每一位依次对应一个I/O地址,位串的第0位对应I/O地址0,位串的第n位对应I/O地址n。如果位串中的第位为0,那么对应的I/O地址m可以由在任何特权级执行的程序访问;否则对应的I/O地址m只能由在IOPL特权级或更内层特权级执行的程序访问。如果在I/O外层特权级执行的程序访问位串中位值为1的位所对应的I/O地址,那么将引起通用保护异常。 I/O地址空间按字节进行编址。一条I/O指令最多可涉及四个I/O地址。在需要根据I/O位图决定是否可访问I/O地址的情况下,当一条I/O指令涉及多个I/O地址时,只有这多个I/O地址所对应的I/O许可位图中的位都为0时,该I/O指令才能被正常执行,如果对应位中任一位为1,就会引起通用保护异常。 80386支持的I/O地址空间大小是64K,所以构成I/O许可位图的二进制位串最大长度是64K个位,即位图的有效部分最大为8K字节。一个任务实际需要使用的I/O许可位图大小通常要远小于这个数目。 当前任务使用的I/O许可位图存储在当前任务TSS中低端的64K字节内。I/O许可位图总以字节为单位存储,所以位串所含的位数总被认为是8的倍数。从前文中所述的TSS格式可见,TSS内偏移66H的字确定I/O许可位图的开始偏移。由于I/O许可位图最长可达8K字节,所以开始偏移应小于56K,但必须大于等于104,因为TSS中前104字节为TSS的固定格式,用于保存任务的状态。 1.I/O访问许可检查细节保护模式下处理器在执行I/O指令时进行许可检查的细节如下所示。 (1)若CPL<=IOPL,则直接转步骤(8);(2)取得I/O位图开始偏移;(3)计算I/O地址对应位所在字节在I/O许可位图内的偏移;(4)计算位偏移以形成屏蔽码值,即计算I/O地址对应位在字节中的第几位;(5)把字节偏移加上位图开始偏移,再加1,所得值与TSS界限比较,若越界,则产生出错码为0的通用保护故障;(6)若不越界,则从位图中读对应字节及下一个字节;(7)把读出的两个字节与屏蔽码进行与运算,若结果不为0表示检查未通过,则产生出错码为0的通用保护故障;(8)进行I/O访问。设某一任务的TSS段如下: TSSSEG                  SEGMENT PARA USE16                        TSS     <>             ;TSS低端固定格式部分                        DB      8 DUP(0)       ;对应I/O端口00H—3FH                        DB      10000000B      ;对应I/O端口40H—47H                        DB      01100000B      ;对用I/O端口48H—4FH                        DB      8182 DUP(0ffH) ;对应I/O端口50H—0FFFFH                        DB      0FFH           ;位图结束字节TSSLen                  =       $TSSSEG                  ENDS 再假设IOPL=1,CPL=3。那么如下I/O指令有些能正常执行,有些会引起通用保护异常:                         in      al,21h  ;(1)正常执行                        in      al,47h  ;(2)引起异常                        out     20h,al  ;(3)正常实行                        out     4eh,al  ;(4)引起异常                        in      al,20h  ;(5)正常执行                        out     20h,eax ;(6)正常执行                        out     4ch,ax  ;(7)引起异常                        in      ax,46h  ;(8)引起异常                        in      eax,42h ;(9)正常执行 由上述I/O许可检查的细节可见,不论是否必要,当进行许可位检查时,80386总是从I/O许可位图中读取两个字节。目的是为了尽快地执行I/O许可检查。一方面,常常要读取I/O许可位图的两个字节。例如,上面的第(8)条指令要对I/O位图中的两个位进行检查,其低位是某个字节的最高位,高位是下一个字节的最低位。可见即使只要检查两个位,也可能需要读取两个字节。另一方面,最多检查四个连续的位,即最多也只需读取两个字节。所以每次要读取两个字节。这也是在判别是否越界时再加1的原因。为此,为了避免在读取I/O许可位图的最高字节时产生越界,必须在I/O许可位图的最后填加一个全1的字节,即0FFH。此全1的字节应填加在最后一个位图字节之后,TSS界限范围之前,即让填加的全1字节在TSS界限之内。 I/O许可位图开始偏移加8K所得的值与TSS界限值二者中较小的值决定I/O许可位图的末端。当TSS的界限大于I/O许可位图开始偏移加8K时,I/O许可位图的有效部分就有8K字节,I/O许可检查全部根据全部根据该位图进行。当TSS的界限不大于I/O许可位图开始偏移加8K时,I/O许可位图有效部分就不到8K字节,于是对较小I/O地址访问的许可检查根据位图进行,而对较大I/O地址访问的许可检查总被认为不可访问而引起通用保护故障。因为这时会发生字节越界而引起通用保护异常,所以在这种情况下,可认为不足的I/O许可位图的高端部分全为1。利用这个特点,可大大节约TSS中I/O许可位图占用的存储单元,也就大大减小了TSS段的长度。 <二>重要标志保护输入输出的保护与存储在标志寄存器EFLAGS中的IOPL密切相关,显然不能允许随便地改变IOPL,否则就不能有效地实现输入输出保护。类似地,对EFLAGS中的IF位也必须加以保护,否则CLI和STI作为敏感指令对待是无意义的。此外,EFLAGS中的VM位决定着处理器是否按虚拟8086方式工作。 80386对EFLAGS中的这三个字段的处理比较特殊,只有在较高特权级执行的程序才能执行IRET、POPF、CLI和STI等指令改变它们。下表列出了不同特权级下对这三个字段的处理情况。 不同特权级对标志寄存器特殊字段的处理 特权级 VM标志字段 IOPL标志字段 IF标志字段 CPL=0 可变(初POPF指令外) 可变 可变 0  不变 不变 可变 CPL>IOPL 不变 不变 不变 从表中可见,只有在特权级0执行的程序才可以修改IOPL位及VM位;只能由相对于IOPL同级或更内层特权级执行的程序才可以修改IF位。与CLI和STI指令不同,在特权级不满足上述条件的情况下,当执行POPF指令和IRET指令时,如果试图修改这些字段中的任何一个字段,并不引起异常,但试图要修改的字段也未被修改,也不给出任何特别的信息。此外,指令POPF总不能改变VM位,而PUSHF指令所压入的标志中的VM位总为0。 <三>演示输入输出保护的实例(实例九)下面给出一个用于演示输入输出保护的实例。演示内容包括:I/O许可位图的作用、I/O敏感指令引起的异常和特权指令引起的异常;使用段间调用指令CALL通过任务门调用任务,实现任务嵌套。 1.演示步骤实例演示的内容比较丰富,具体演示步骤如下:(1)在实模式下做必要准备后,切换到保护模式;(2)进入保护模式的临时代码段后,把演示任务的TSS段描述符装入TR,并设置演示任务的堆栈;(3)进入演示代码段,演示代码段的特权级是0;(4)通过任务门调用测试任务1。测试任务1能够顺利进行;(5)通过任务门调用测试任务2。测试任务2演示由于违反I/O许可位图规定而导致通用保护异常;(6)通过任务门调用测试任务3。测试任务3演示I/O敏感指令如何引起通用保护异常;(7)通过任务门调用测试任务4。测试任务4演示特权指令如何引起通用保护异常;(8)从演示代码转临时代码,准备返回实模式;(9)返回实模式,并作结束处理。

    标签: 汇编 保护模式 教程

    上传时间: 2013-12-11

    上传用户:nunnzhy

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish