We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1 xng IR3 on or near an unknown manifold M, and produces as OUTPUT a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from two-dimensional slices, and interactive surface sketching.
标签: demonstrate unorganized algorithm describe
上传时间: 2013-12-18
上传用户:xc216
Problem A:放苹果 Time Limit:1000MS Memory Limit:65536K Total Submit:1094 Accepted:441 Language: not limited Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。 Input 第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。 OUTPUT 对输入的每组数据M和N,用一行输出相应的K。 Sample Input 1 7 3 Sample OUTPUT 8
标签: Limit Accepted Language Problem
上传时间: 2016-11-30
上传用户:leixinzhuo
// chebysheve outlier detection // this function is used to detect the abnormal value among a set of data // input: // delta: a set of data // flag: discribe which data is already known as outlier // p: restrict level // OUTPUT: // double[] door : byyond which the data may be considered as a outlier // door[0]: the upperdoor // door[1]: the lowerdoor
标签: chebysheve detection abnormal function
上传时间: 2013-11-30
上传用户:13517191407
Flex chip implementation File: UP2FLEX JTAG jumper settings: down, down, up, up Input: Reset - FLEX_PB1 Input n - FLEX_SW switches 1 to 8 OUTPUT: Countdown - two 7-segment LEDs. Done light - decimal point on Digit1. Operation: Setup the binary input n number. Press the Reset switch. See the countdown from n down to 0 on the 7-segment LEDs. Done light lit when program terminates.
标签: down implementation settings UP2FLEX
上传时间: 2014-01-21
上传用户:sclyutian
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。 合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK, 则他们的身高满足T1 < T2 < ...< Ti > Ti+1 > … > TK (1 <= i <= K)。 你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。 Input 输入包含若干个测试用例。 对于每个测试用例,输入第一行是一个整数N(2<=N<=100),表示同学的总数。第二行有N个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。当输入同学总数N为0时表示输入结束。 OUTPUT 对于每个测试案例,输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。 Sample Input 8 186 186 150 200 160 130 197 220 3 150 130 140 0 Sample OUTPUT 4 1
标签:
上传时间: 2016-12-06
上传用户:jackgao
Description 将m个孩子从1到m编上号,按序号围坐成一个圈,从1号孩子开始数,每数到n时,被数到的孩子即离开圈子,然后从下一个孩子开始,再从1开始数,如此不断地数下去,只到只剩下最后一个孩子,问剩下的孩子是几号? Input 输入为一组整数对,每个整数对占一行,整数对的第一个整数表示m,即孩子的个数,第二个整数表示n,即被数到n的孩子将离开。 0<m<10000, n>0 输入以0 0作为结束。 OUTPUT 每组整数对输出一个结果整数,每个输出占一行。 最后一行输入0 0不产生输出。
标签: Description
上传时间: 2016-12-09
上传用户:凌云御清风
Description 一个一元多项式可以看作由若干个一元单项式按降幂排列成的线性表。请编写程序对输入的两个一元多项式求积,并输出求积的结果。 Input 输入为两个一元多项式,每个一元多项式输入一行,按照降幂依次输入每个单项式的系数和指数,并以-1 -1作为结束。 系数和指数均为整数,指数不小于0。 OUTPUT 输出为求积结果多项式,按照降幂依次输出每个单项的系数和指数,每个数值后面用一个空格隔开,输出结果多项式后换行。 系数为0的单项式不得输出——除非结果多项式就是0,则直接输出0。
标签: Description 多项式 线性 程序
上传时间: 2016-12-09
上传用户:sammi
k-step ahead predictions determined by simulation of the % one-step ahead neural network predictor. For NNARMAX % models the residuals are set to zero when calculating the % predictions. The predictions are compared to the observed OUTPUT. %
标签: ahead predictions determined simulation
上传时间: 2016-12-27
上传用户:busterman
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-OUTPUT pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the OUTPUT layer.
标签: Levenberg-Marquardt desired network neural
上传时间: 2016-12-27
上传用户:jcljkh
Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) networks can be trained. % % The activation functions can either be linear or tanh. The network % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the OUTPUT layer.
标签: recursive prediction algorithm Gauss-Ne
上传时间: 2016-12-27
上传用户:ljt101007