虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

MSB

  • TLC2543 中文资料

    TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明    TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double  sum_final1; double  sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe};  void delay(unsigned char b)   //50us {           unsigned char a;           for(;b>0;b--)                     for(a=22;a>0;a--); }  void display(uchar a,uchar b,uchar c,uchar d) {    P0=duan[a]|0x80;    P2=wei[0];    delay(5);    P2=0xff;    P0=duan[b];    P2=wei[1];    delay(5);   P2=0xff;   P0=duan[c];   P2=wei[2];   delay(5);   P2=0xff;   P0=duan[d];   P2=wei[3];   delay(5);   P2=0xff;   } uint read(uchar port) {   uchar  i,al=0,ah=0;   unsigned long ad;   clock=0;   _cs=0;   port<<=4;   for(i=0;i<4;i++)  {    d_in=port&0x80;    clock=1;    clock=0;    port<<=1;  }   d_in=0;   for(i=0;i<8;i++)  {    clock=1;    clock=0;  }   _cs=1;   delay(5);   _cs=0;   for(i=0;i<4;i++)  {    clock=1;    ah<<=1;    if(d_out)ah|=0x01;    clock=0; }   for(i=0;i<8;i++)  {    clock=1;    al<<=1;    if(d_out) al|=0x01;    clock=0;  }   _cs=1;   ad=(uint)ah;   ad<<=8;   ad|=al;   return(ad); }  void main()  {   uchar j;   sum=0;sum1=0;   sum_final=0;   sum_final1=0;    while(1)  {              for(j=0;j<128;j++)          {             sum1+=read(1);             display(a1,b1,c1,d1);           }            sum=sum1/128;            sum1=0;            sum_final1=(sum/4095)*5;            sum_final=sum_final1*1000;            a1=(int)sum_final/1000;            b1=(int)sum_final%1000/100;            c1=(int)sum_final%1000%100/10;            d1=(int)sum_final%10;            display(a1,b1,c1,d1);           }         } 

    标签: 2543 TLC

    上传时间: 2013-11-19

    上传用户:shen1230

  • 自动检测80C51串行通讯中的波特率

    自动检测80C51串行通讯中的波特率:本文介绍一种在80C51 串行通讯应用中自动检测波特率的方法。按照经验,程序起动后所接收到的第1 个字符用于测量波特率。这种方法可以不用设定难于记忆的开关,还可以免去在有关应用中使用多种不同波特率的烦恼。人们可以设想:一种可靠地实现自动波特检测的方法是可能的,它无须严格限制可被确认的字符。问题是:在各种的条件下,如何可以在大量允许出现的字符中找出波特率定时间隔。显然,最快捷的方法是检测一个单独位时间(single bit time),以确定接收波特率应该是多少。可是,在RS-232 模式下,许多ASCII 字符并不能测量出一个单独位时间。对于大多数字符来说,只要波特率存在合理波动(这里的波特率是指标准波特率),从起始位到最后一位“可见”位的数据传输周期就会在一定范围内发生变化。此外,许多系统采用8 位数据、无奇偶校验的格式传输ASCII 字符。在这种格式里,普通ASCII 字节不会有MSB 设定,并且,UART总是先发送数据低位(LSB),后发送数据高位(MSB),我们总会看见数据的停止位。在下面的波特率检测程序中,先等待串行通讯输入管脚的起始信号(下降沿),然后起动定时器T0。在其后的串行数据的每一个上升沿,将定时器T0 的数值捕获并保存。当定时器T0溢出时,其最后一次捕获的数值即为从串行数据起始位到最后一个上升沿(我们假设是停止位)过程所持续的时间。

    标签: 80C51 自动检测 串行通讯 波特率

    上传时间: 2014-08-22

    上传用户:dajin

  • 16 16点阵显示汉字原理及显示程序

    16 16点阵显示汉字原理及显示程序 #include "config.h" #define                DOTLED_LINE_PORT        PORTB #define                DOTLED_LINE_DDR                DDRB #define                DOTLED_LINE_PIN                PINB #define                DOTLED_LINE_SCKT        PB1 #define                DOTLED_LINE_SCKH        PB5 #define                DOTLED_LINE_SDA                PB3 #define                DOTLED_ROW_PORT                PORTC #define                DOTLED_ROW_DDR                DDRC #define                DOTLED_ROW_PIN                PINC #define                DOTLED_ROW_A0                PC0 #define                DOTLED_ROW_A1                PC1 #define                DOTLED_ROW_A2                PC2 #define                DOTLED_ROW_A3                PC3 #define                DOTLED_ROW_E                PC4 uint8 font[] = { /*--  调入了一幅图像:这是您新建的图像  --*/ /*--  宽度x高度=16x16  --*/ 0x00,0x00,0x00,0x00,0x08,0x38,0x18,0x44,0x08,0x44,0x08,0x04,0x08,0x08,0x08,0x10, 0x08,0x20,0x08,0x40,0x08,0x40,0x08,0x40,0x3E,0x7C,0x00,0x00,0x00,0x00,0x00,0x00 }; static void TransmitByte(uint8 byte); static void SelectRow(uint8 row); static void FlipLatchLine(void); static void TransmitByte(uint8 byte) {         uint8 i;                  for(i = 0 ; i < 8 ; i ++)         {                 if(byte & (1 << i))                 {                         DOTLED_LINE_PORT |= _BV(DOTLED_LINE_SDA);                 }                 else                 {                         DOTLED_LINE_PORT &= ~_BV(DOTLED_LINE_SDA);                 }                 //__delay_cycles(100);                 DOTLED_LINE_PORT |= _BV(DOTLED_LINE_SCKH);                 //__delay_cycles(100);                 DOTLED_LINE_PORT &= ~_BV(DOTLED_LINE_SCKH);                 //__delay_cycles(100);         } } static void SelectRow(uint8 row) {           //row -= 1;         row |= DOTLED_ROW_PIN & 0xe0;         DOTLED_ROW_PORT = row; } static void FlipLatchLine(void) {         DOTLED_LINE_PORT |= _BV(DOTLED_LINE_SCKT);         DOTLED_LINE_PORT &= ~_BV(DOTLED_LINE_SCKT); } void InitDotLedPort(void) {         DOTLED_LINE_PORT &= ~(_BV(DOTLED_LINE_SCKT) | _BV(DOTLED_LINE_SCKH));         DOTLED_LINE_PORT |= _BV(DOTLED_LINE_SDA);         DOTLED_LINE_DDR |= _BV(DOTLED_LINE_SCKT) | _BV(DOTLED_LINE_SCKH) | _BV(DOTLED_LINE_SDA);                  DOTLED_ROW_PORT |= 0x1f;         DOTLED_ROW_PORT &= 0xf0;         DOTLED_ROW_DDR |= 0x1f; } void EnableRow(boolean IsEnable) {         if(IsEnable)         {                 DOTLED_ROW_PORT &= ~_BV(DOTLED_ROW_E);         }         else         {                 DOTLED_ROW_PORT |= _BV(DOTLED_ROW_E);         } } void PrintDotLed(uint8 * buffer) {         uint8 i , tmp;                  for(i = 0 ; i < 16 ; i ++)         {                 tmp = *buffer ++;                 TransmitByte(~tmp);                 tmp = *buffer ++;                 TransmitByte(~tmp);                 SelectRow(i);                 FlipLatchLine();         } } void main(void) {         InitDotLedPort();                  EnableRow(TRUE);                  while(1)         {                 PrintDotLed(font);                 __delay_cycles(5000);         }          } //---------------------------------------------------- config.h文件 #ifndef        _CONFIG_H #define        _CONFIG_H //#define                GCCAVR #define                CPU_CYCLES        7372800L #ifndef                GCCAVR #define                _BV(bit)        (1 << (bit)) #endif #define                MSB                0x80 #define                LSB                0x01 #define                FALSE                0 #define                TRUE                1 typedef                unsigned char        uint8; typedef                unsigned int        uint16; typedef                unsigned long        uint32; typedef                unsigned char        boolean; #include <ioavr.h> #include <inavr.h> #include "dotled.h" #endif //-----

    标签: 16 点阵显示 汉字 显示程序

    上传时间: 2013-11-18

    上传用户:mnacyf

  • ADS1210 ADS1211 C程序

    include "macrodefine.h"#include "lpc2294.h" //ADS1210初始化子程序void AD_Init(void){ Delayus(2); SPI1_Communation(0x64); SPI1_Communation(0x72); //单极性,SDOUT独立,先MSB,REF使用内部 SPI1_Communation(0x20); //自校准模式,增益1,通道0 SPI1_Communation(0x87); //TURBO=16, SPI1_Communation(0xa0); //数据更新率100}//读取ADS1210转换结果子程序uint32 Read_AD_Data(void){ uint8 i=0; uint8 Data_Temp[3]; uint32 Result_HEX=0; Delayus(1); SPI1_Communation(0xc0); for(i=0;i<3;i++) {  Data_Temp[i] =SPI1_Communation(0xff); }

    标签: ADS 1210 1211 C程序

    上传时间: 2013-10-10

    上传用户:suicone

  • 自动检测单片机80C51串行通讯时的波特率

    自动检测80C51 串行通讯中的波特率本文介绍一种在80C51 串行通讯应用中自动检测波特率的方法。按照经验,程序起动后所接收到的第1 个字符用于测量波特率。这种方法可以不用设定难于记忆的开关,还可以免去在有关应用中使用多种不同波特率的烦恼。人们可以设想:一种可靠地实现自动波特检测的方法是可能的,它无须严格限制可被确认的字符。问题是:在各种的条件下,如何可以在大量允许出现的字符中找出波特率的定时间隔。显然,最快捷的方法是检测一个单独位时间(single bit time),以确定接收波特率应该是多少。可是,在RS-232 模式下,许多ASCII 字符并不能测量出一个单独位时间。对于大多数字符来说,只要波特率存在合理波动(这里的波特率是指标准波特率),从起始位到最后一位“可见”位的数据传输周期就会在一定范围内发生变化。此外,许多系统采用8 位数据、无奇偶校验的格式传输ASCII 字符。在这种格式里,普通ASCII 字节不会有MSB 设定

    标签: 80C51 自动检测 单片机 串行通讯

    上传时间: 2013-10-15

    上传用户:shirleyYim

  • This unit uses an array of bytes to represent a LARGE number. The number is binairy-stored in the ar

    This unit uses an array of bytes to represent a LARGE number. The number is binairy-stored in the array, with the Least Significant Byte (LSB) first and the Most Significant Byte (MSB) last, like all Intel-integer types.

    标签: number binairy-stored represent LARGE

    上传时间: 2015-10-08

    上传用户:xieguodong1234

  • 1. 对给定语料估计其基音周期。 要求用MATLAB语言实现有关基音检测算法

    1. 对给定语料估计其基音周期。 要求用MATLAB语言实现有关基音检测算法,并给出检测结果。2. 实验语料:aoYiSheng.raw 发音:“茅以升”;时长0.9s;采样率:8kHz;量化精度为16bits/sample;数据格式 LSB,MSB分析帧长:20ms(160样点)总帧数:45

    标签: MATLAB 基音 周期 语言

    上传时间: 2014-12-01

    上传用户:z754970244

  • /*SPI规范:Data is always clocked into the device on the rising edge of SCK a-*/ /* nd clocked out of

    /*SPI规范:Data is always clocked into the device on the rising edge of SCK a-*/ /* nd clocked out of the device on the falling edge of SCK.All instruction-*/ /* s,addresses and data are transferred with the most significant bit(MSB) */ /* first.

    标签: clocked the always device

    上传时间: 2016-02-19

    上传用户:远远ssad

  • 通信协议: 第1字节

    通信协议: 第1字节,MSB为1,为第1字节标志,第2字节,MSB为0,为非第一字节标志,其余类推……,最后一个字节为前几个字节后7位的异或校验和。

    标签: 通信协议 字节

    上传时间: 2016-03-11

    上传用户:ANRAN

  • 通信协议:第1字节

    通信协议:第1字节,MSB为1,为第1字节标志,第2字节,MSB为0,为非第一字节标志,其余类推……,最后一个字节为前几个字节后7位的异或校验和。 测试方法:可以将串口调试助手的发送框写上 95 10 20 25,并选上16进制发送,接收框选上16进制显示,如果每发送一次就接收到95 10 20 25,说明测试成功。 下载C的源程序:

    标签: 通信协议 字节

    上传时间: 2016-06-29

    上传用户:13188549192