虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

High-resolution

  • 在单端应用中采用差分I/O放大器

      Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.

    标签: 单端应用 差分 放大器

    上传时间: 2013-11-23

    上传用户:rocketrevenge

  • 将您的微控制器ADC升级至真正的12位性能

      Many 8-bit and 16-bit microcontrollers feature 10-bitinternal ADCs. A few include 12-bit ADCs, but these oftenhave poor or nonexistent AC specifi cations, and certainlylack the performance to meet the needs of an increasingnumber of applications. The LTC®2366 and its slowerspeed versions offer a high performance alternative, asshown in the AC specifi cations in Table 1. Compare theseguaranteed specifi cations with the ADC built into yourcurrent microcontroller.

    标签: ADC 微控制器 性能

    上传时间: 2013-10-26

    上传用户:jackandlee

  • DA转换接口的射频IQ调制

      Linear Technology’s High Frequency Product lineupincludes a variety of RF I/Q modulators. The purpose ofthis application note is to illustrate the circuits requiredto interface these modulators with several popular D/Aconverters. Such circuits typically are required to maximizethe voltage transfer from the DAC to the baseband inputsof the modulator, as well as provide some reconstructionfi ltering.

    标签: DA转换 接口 射频 调制

    上传时间: 2013-10-19

    上传用户:FreeSky

  • 高速放大器技术

      This publication represents the largest LTC commitmentto an application note to date. No other application noteabsorbed as much effort, took so long or cost so much.This level of activity is justified by our belief that high speedmonolithic amplifiers greatly interest users.

    标签: 高速放大器

    上传时间: 2014-01-07

    上传用户:wfl_yy

  • ADC中精确度与分辨率认识

        ADC制造商在数据手册中定义ADC性能的方式令人困惑,并且可能会在应用开发中导致错误的推断。最大的困惑也许就是“分辨率”和“精确度”了——即Resolution和Accuracy,这是两个不同的参数,却经常被混用,但事实上,分辨率并不能代表精确度,反之亦然。本文提出并解释了ADC“分辨率”和“精确度”,它们与动态范围、噪声层的关系,以及在诸如计量等应用中的含义。

    标签: ADC 精确度 分辨率

    上传时间: 2013-11-06

    上传用户:gxrui1991

  • MAX2691 L2 Band GPS Low-Noise Amplifier

      The MAX2691 low-noise amplifier (LNA) is designed forGPS L2 applications. Designed in Maxim’s advancedSiGe process, the device achieves high gain andlow noise figure while maximizing the input-referred 1dBcompression point and the 3rd-order intercept point. TheMAX2691 provides a high gain of 17.5dB and sub 1dBnoise figure.

    标签: Amplifier Low-Noise 2691 Band

    上传时间: 2014-12-04

    上传用户:zaocan888

  • 针对远程系统的小型温度传感器 (tiny temperatu

    The LM20, LM45, LM50, LM60, LM61, and LM62 are analog output temperature sensors. They have various output voltage slopes (6.25mV/°C to 17mV/°C) and power supply voltage ranges (2.4V to 10V).The LM20 is the smallest, lowest power consumption analog output temperature sensor National Semiconductor has released. The LM70 and LM74 are MICROWIRE/SPI compatible digital temperature sensors. The LM70 has a resolution of 0.125°C while the LM74 has a resolution of 0.625°C. The LM74 is the most accurate of the two with an accuracy better than ±1.25°C. The LM75 is National’s first digital output temperature sensor, released several years ago.

    标签: temperatu tiny 远程系统 温度传感器

    上传时间: 2014-12-23

    上传用户:yl8908

  • DAC技术用语 (D/A Converters Defini

    Differential Nonlinearity: Ideally, any two adjacent digitalcodes correspond to output analog voltages that are exactlyone LSB apart. Differential non-linearity is a measure of theworst case deviation from the ideal 1 LSB step. For example,a DAC with a 1.5 LSB output change for a 1 LSB digital codechange exhibits 1⁄2 LSB differential non-linearity. Differentialnon-linearity may be expressed in fractional bits or as a percentageof full scale. A differential non-linearity greater than1 LSB will lead to a non-monotonic transfer function in aDAC.Gain Error (Full Scale Error): The difference between theoutput voltage (or current) with full scale input code and theideal voltage (or current) that should exist with a full scale inputcode.Gain Temperature Coefficient (Full Scale TemperatureCoefficient): Change in gain error divided by change in temperature.Usually expressed in parts per million per degreeCelsius (ppm/°C).Integral Nonlinearity (Linearity Error): Worst case deviationfrom the line between the endpoints (zero and full scale).Can be expressed as a percentage of full scale or in fractionof an LSB.LSB (Lease-Significant Bit): In a binary coded system thisis the bit that carries the smallest value or weight. Its value isthe full scale voltage (or current) divided by 2n, where n is theresolution of the converter.Monotonicity: A monotonic function has a slope whose signdoes not change. A monotonic DAC has an output thatchanges in the same direction (or remains constant) for eachincrease in the input code. the converse is true for decreasing codes.

    标签: Converters Defini DAC

    上传时间: 2013-10-30

    上传用户:stvnash

  • Analog Circuit Design in Porta

    •Founded in Jan. 08, 2001 in Shanghai, China.•Fabless IDH focused on Analog & Mixed Signal Chip design & marketing •Over 100 IC introduced.•Over 200 OEM Customer worldwide•ISO-9000 Certified•Distribution Channel in Taiwan, China & Japan To achieve 100% customer satisfactionby producing the technically advanced product with the best quality, on-time delivery and service. Leverages on proprietary process and world-class engineering team to develop innovative & high quality analog solutions that add value to electronics equipment.

    标签: Circuit Analog Design Porta

    上传时间: 2013-10-24

    上传用户:songnanhua

  • High-Speed Digital System desi

    前面讨论了很多内容,基本上涉及了有关PCB板的绝大部分相关的知识。第二章探讨了传输线的基本原理,第三章探讨了串扰,在第四章里我们阐述了许多在现代设计中必须关注的非理想互连的问题。对于信号从驱动端引脚到接收端引脚的电气路径的相关问题,我们已经做了一些探究,然而对于硅芯片,即处于封装内部的IC来说,其信号传输通常要通过过孔和连接器来进行,对这样的情况我们该如何处理?在本章中,我们将通过对封装、过孔和连接器的研究,阐述其原理,从而指导大家在设计的时候对整个电气路径进行完整地分析,即从驱动端内部IC芯片的焊盘到接受器IC芯片的焊盘。

    标签: High-Speed Digital System desi

    上传时间: 2013-11-24

    上传用户:maizezhen