虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

GAUSSIAN

GAUSSIAN是一个功能强大的量子化学综合软件包。其可执行程序可在不同型号的大型计算机,超级计算机,工作站和个人计算机上运行,并相应有不同的版本。高斯功能:过渡态能量和结构、键和反应能量、分子轨道、原子电荷和电势、振动频率、红外和拉曼光谱、核磁性质、极化率和超极化率、热力学性质、反应路径,计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因此,GAUSSIAN可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。常常与gaussview连用。
  • zemax源码: This DLL models a standard ZEMAX surface type, either plane, sphere, or conic The surfac

    zemax源码: This DLL models a standard ZEMAX surface type, either plane, sphere, or conic The surface also demonstrates a user-defined apodization filter The filter is defined as part of the real ray trace, case 5 The filter can be used at the stop to produce x-y GAUSSIAN apodization similar to the GAUSSIAN pupil apodization in ZEMAX but separate in x and y. The amplitude apodization is of the form EXP[-(Gx(x/R)^2 + Gy(y/R)^2)] The transmission is of the form EXP[-2(Gx(x/R)^2 + Gy(y/R)^2)] where x^2 + y^2 = r^2 R = semi-diameter The tranmitted intensity is maximum in the center. T is set to 0 if semi-diameter < 1e-10 to avoid division by zero.

    标签: standard surface models either

    上传时间: 2013-12-05

    上传用户:003030

  • 利用二元域的高斯消元法得到输入矩阵H对应的生成矩阵G

    利用二元域的高斯消元法得到输入矩阵H对应的生成矩阵G,同时返回与G满足mod(G*P ,2)=0的矩阵P,其中P 表示P的转置 使用方法:[P,G]=GAUSSIAN(H,x),x=1 or 2,1表示G的左边为单位阵

    标签: 矩阵 二元 高斯 输入

    上传时间: 2014-11-27

    上传用户:semi1981

  • 这是一个非常简单的遗传算法源代码

    这是一个非常简单的遗传算法源代码,代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 GAUSSIAN变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的 文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

    标签: 算法 源代码

    上传时间: 2015-10-16

    上传用户:曹云鹏

  • 基于libsvm

    基于libsvm,开发的支持向量机图形界面(初级水平)应用程序,并提供了关于C和sigma的新的参数选择方法,使得SVM的使用更加简单直观.参考文章 Fast and Efficient Strategies for Model Selection of GAUSSIAN Support Vector Machine 可google之。

    标签: libsvm

    上传时间: 2015-10-16

    上传用户:cuibaigao

  • In this article, we present an overview of methods for sequential simulation from posterior distribu

    In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-GAUSSIAN. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed.We showin particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.

    标签: sequential simulation posterior overview

    上传时间: 2015-12-31

    上传用户:225588

  • The need for accurate monitoring and analysis of sequential data arises in many scientic, industria

    The need for accurate monitoring and analysis of sequential data arises in many scientic, industrial and nancial problems. Although the Kalman lter is effective in the linear-GAUSSIAN case, new methods of dealing with sequential data are required with non-standard models. Recently, there has been renewed interest in simulation-based techniques. The basic idea behind these techniques is that the current state of knowledge is encapsulated in a representative sample from the appropriate posterior distribution. As time goes on, the sample evolves and adapts recursively in accordance with newly acquired data. We give a critical review of recent developments, by reference to oil well monitoring, ion channel monitoring and tracking problems, and propose some alternative algorithms that avoid the weaknesses of the current methods.

    标签: monitoring sequential industria accurate

    上传时间: 2013-12-17

    上传用户:familiarsmile

  • 用于产生gamma分布的噪声序列

    用于产生gamma分布的噪声序列,以及分析GAUSSIAN噪声的各参数。

    标签: gamma 分布 序列

    上传时间: 2016-01-08

    上传用户:xfbs821

  • 一个遗传算法 这是一个非常简单的遗传算法源代码

    一个遗传算法 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 GAUSSIAN变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的 文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

    标签: 算法 源代码

    上传时间: 2013-12-20

    上传用户:myworkpost

  • EM算法是机器学习领域中常用的一种算法

    EM算法是机器学习领域中常用的一种算法,这个文件是EM算法最简单的一种实现,即在GAUSSIAN Mixture model上面的EM。

    标签: EM算法 机器学习 算法

    上传时间: 2013-12-11

    上传用户:wxhwjf

  • The software implements particle filtering and Rao Blackwellised particle filtering for conditionall

    The software implements particle filtering and Rao Blackwellised particle filtering for conditionally GAUSSIAN Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generic and suitable for any application. For details, please refer to Rao-Blackwellised Particle Filtering for Fault Diagnosis and On Sequential Simulation-Based Methods for Bayesian Filtering After downloading the file, type "tar -xf demo_rbpf_gauss.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab and run the demo.

    标签: filtering particle Blackwellised conditionall

    上传时间: 2014-12-05

    上传用户:410805624