IPC 标准介绍
上传时间: 2015-01-01
上传用户:懒龙1988
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System
上传时间: 2013-11-14
上传用户:zoudejile
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
标签: PicoBlaze Create Master Xilinx
上传时间: 2013-11-12
上传用户:大三三
通过以太网远程配置Nios II 处理器 应用笔记 Firmware in embedded hardware systems is frequently updated over the Ethernet. For embedded systems that comprise a discrete microprocessor and the devices it controls, the firmware is the software image run by the microprocessor. When the embedded system includes an FPGA, firmware updates include updates of the hardware image on the FPGA. If the FPGA includes a Nios® II soft processor, you can upgrade both the Nios II processor—as part of the FPGA image—and the software that the Nios II processor runs, in a single remote configuration session.
上传时间: 2013-11-22
上传用户:chaisz
Nios II定制指令用户指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor. The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.
上传时间: 2013-10-12
上传用户:kang1923
altera
上传时间: 2014-01-02
上传用户:pinksun9
Abstract: This application note discusses the development and deployment of 3G cellular femtocell base stations. The technicalchallenges for last-mile residential connectivity and adding system capacity in dense urban environments are discussed, with 3Gfemtocell base stations as a cost-effective solution. Maxim's 3GPP TS25.104-compliant transceiver solution is presented along withcomplete radio reference designs such as RD2550. For more information on the RD2550, see reference design 5364, "FemtocellRadio Reference Designs Using the MAX2550–MAX2553 Transceivers."
标签: Base-Station Applications Single-Chip Transceiver
上传时间: 2013-11-05
上传用户:超凡大师
Altium Designer Winter09 最新PCB库,也是最全的。
上传时间: 2013-10-29
上传用户:dbs012280
In the past decade, the size and complexity of manyFPGA designs exceeds the time and resourcesavailable to most design teams, making the use andreuse of Intellectual Property (IP) imperative.However, integrating numerous IP blocks acquiredfrom both internal and external sources can be adaunting challenge that often extends, rather thanshortens, design time. As today's designs integrateincreasing amounts of functionality, it is vital thatdesigners have access to proven, up-to-date IP fromreliable sources.
上传时间: 2013-11-11
上传用户:csgcd001
This application note provides users with a general understanding of the SVF and XSVF fileformats as they apply to Xilinx devices. Some familiarity with IEEE STD 1149.1 (JTAG) isassumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format(XSVF) files in embedded programming applications
上传时间: 2015-01-02
上传用户:时代将军