近年来,GPS技术迅速发展,并随着3G时代的到来,其应用领域日益广阔,需求量与日俱增。与此同时,随着电路系统设计越来越复杂,上市时间日益缩短,集成电路设计方法面临重大变革。因此采用新型方法学来设计GPS接收系统是必要的。 本文基于GPS原理,采用可复用的IP技术和软硬协同设计技术,设计了一种高性能的GPS SOC接收系统。论文首先分析了GPS信号解调的原理,提出了一种高性能的捕获和跟踪系统结构,详细说明了其工作流程和设计原理。其次,基于高性能总线的选取提出了整个基带系统地结构,并阐明了总线上的各个模块设计方法。采用了直接复用的测试手段和FPGA的测试平台,缩短开发周期,而且保证了对整个系统测试的覆盖率。本文所设计的系统最大特色在于易于集成到其它系统中,并且仅占用10个芯片端口,实现了IP化的设计目的。 最后本文介绍了测试过程中所采用的基于FPGA平台的仿真验证方案和测试方法,并给出了最终的测试结果,达到了对卫星信号搜索定位的目的。
上传时间: 2013-04-24
上传用户:starlet007
FPGA(Field Programmable Gate Arrays)是目前广泛使用的一种可编程器件,FPGA的出现使得ASIC(Application Specific Integrated Circuits)产品的上市周期大大缩短,并且节省了大量的开发成本。目前FPGA的功能越来越强大,满足了目前集成电路发展的新需求,但是其结构同益复杂,规模也越来越大,内部资源的种类也R益丰富,但同时也给测试带来了困难,FPGA的发展对测试的要求越来越高,对FPGA测试的研究也就显得异常重要。 本文的主要工作是提出一种开关盒布线资源的可测性设计,通过在FPGA内部加入一条移位寄存器链对开关盒进行配置编程,使得开关盒布线资源测试时间和测试成本减少了99%以上,而且所增加的芯片面积仅仅在5%左右,增加的逻辑资源对FPGA芯片的使用不会造成任何影响,这种方案采用了小规模电路进行了验证,取得了很好的结果,是一种可行的测试方案。 本文的另一工作是采用一种FPGA逻辑资源的测试算法对自主研发的FPGA芯片FDP250K的逻辑资源进行了严格、充分的测试,从FPGA最小的逻辑单元LC开始,首先得到一个LC的测试配置,再结合SLICE内部两个LC的连接关系得到一个SLICE逻辑单元的4种测试配置,并且采用阵列化的测试方案,同时测试芯片内部所有的逻辑单元,使得FPGA内部的逻辑资源得完全充分的测试,测试的故障覆盖率可达100%,测试配置由配套编程工具产生,测试取得了完满的结果。
上传时间: 2013-06-29
上传用户:Thuan
·详细说明:已经验证过的ITU G.729B源码 1.使用定点运算, 纯c实现 2.已经附带了VC6的项目文件(原始的ITU源码只有makefile,没有VC项目文件), 方便初学者入门使用 3.用于测试G.729编码和解码 4.主要应用于VoIP项目 文件列表: ITU-T G.729 Source code ...................
上传时间: 2013-08-01
上传用户:matlab
为了实现时序电路状态验证和故障检测,需要事先设计一个输入测试序列。基于二叉树节点和树枝的特性,建立时序电路状态二叉树,按照电路二叉树节点(状态)与树枝(输入)的层次逻辑关系,可以直观和便捷地设计出时序电路测试序列。用测试序列激励待测电路,可以验证电路是否具有全部预定状态,是否能够实现预定状态转换。
上传时间: 2013-10-19
上传用户:qitiand
随着 EDA 设计的蓬勃发展,加之高速器件的大面积应用,单板的密度越来越大,提高 PCB单板的设计效率,已经成为我们亟待解决的问题。而 PCB 单机布线所花费的时间往往成为制约某一项目进度的瓶颈, 为大幅度提高单板整体设计效率,使用 MENTOR 公司的 ExpeditionPCB 布线器进行多人协同设计能很好地解决这个问题。而为了验证生产质量,需要在单板上添加在线测试点,如何应用 Mentor 布线工具来自动添加测试点提高工作效率显得尤为重要,本文就如何使用 ExpeditionPCB布线器自动添加测试点给出一些基本方法。 [关键词] Mentor、测试点、提高效率
上传时间: 2014-12-24
上传用户:yunfan1978
模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率 负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 3. 综合调整率 综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯 输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。 一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。 同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率 电源供应器的输入功率之定义为以下之公式: True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。 电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载 一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间 启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。 保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。 8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等
上传时间: 2013-10-22
上传用户:zouxinwang
摘要:本系统采用cPLD和AvR单片机作为逻辑控制核心,设计了姿态存储测试系统,以实现姿态信息的采集、编帧和存储。详细介绍了姿态测试系统的工作原理和硬件设计。利用AVR单片机,控制数据的写、读、擦除操作,利用cPLD的逻辑控制功能完善了存储测试系统的各个工作状态,提高了存储测试系统工作的可靠性。验证了该系统可以完成对模拟信号的高速采样和存储。结合cPLD、AVR单]fit~ 1]Flash存储器的优点,实现了8通道数据的高速采集,其存储容量大、噪声小、功耗低。
上传时间: 2014-12-22
上传用户:skhlm
针对特定的载荷物理样机地面测试验证及任务全过程演示的硬件在回路仿真背景,基于RT-LAB仿真平台,搭建了半实物仿真测试系统,其中航天器平台的仿真模型使用Simulink/Stateflow搭建,采用层次化、模块化设计,包含自主运行管理、GNC、电源、热控、推进、地面站等分系统,使用Stateflow实现载荷工作的流程控制,本文详细描述了各分系统的功能、实现,对关键分系统的功能做了验证。表明RT-LAB与Simulink/Stateflow结合可方便快捷地构建各种仿真环境,满足任务要求,而其模块化的特点使模型便于后续的维护、重用与扩展。
上传时间: 2013-11-19
上传用户:ly1994
在对低噪声CMOS图像传感器的研究中,除需关注其噪声外,目前数字化也是它的一个重要的研究和设计方向,设计了一种可用于低噪声CMOS图像传感器的12 bit,10 Msps的流水线型ADC,并基于0.5 ?滋m标准CMOS工艺进行了流片。最后,通过在PCB测试版上用本文设计的ADC实现了模拟输出的低噪声CMOS图像传感器的模数转换,并基于自主开发的成像测试系统进行了成像验证,结果表明,成像画面清晰,该ADC可作为低噪声CMOS图像传感器的芯片级模数转换器应用。
上传时间: 2013-11-19
上传用户:xz85592677
随着 EDA 设计的蓬勃发展,加之高速器件的大面积应用,单板的密度越来越大,提高 PCB单板的设计效率,已经成为我们亟待解决的问题。而 PCB 单机布线所花费的时间往往成为制约某一项目进度的瓶颈, 为大幅度提高单板整体设计效率,使用 MENTOR 公司的 ExpeditionPCB 布线器进行多人协同设计能很好地解决这个问题。而为了验证生产质量,需要在单板上添加在线测试点,如何应用 Mentor 布线工具来自动添加测试点提高工作效率显得尤为重要,本文就如何使用 ExpeditionPCB布线器自动添加测试点给出一些基本方法。 [关键词] Mentor、测试点、提高效率
上传时间: 2013-10-19
上传用户:jeffery