正交频分复用技术(OFDM)是未来宽带无线通信中的关键技术。随着用户对实时多媒体业务,高速移动业务需求的迅速增加,OFDM由于其频谱效率高,抗多径效应能力强,抗干扰性能好等特点,该技术正得到了广泛的应用。 OFDM系统的子载波之间必须保持严格的正交性,因此对符号定时和载波频偏非常敏感。本课题的主要任务是分析各种算法的性能的优劣,选取合适的算法进行FPGA的实现。 本文首先简要介绍了无线信道的传输特性和OFDM系统的基本原理,进而对符号同步和载波同步对接收信号的影响做了分析。然后对比了非数据辅助式同步算法和数据辅助式同步算法的不同特点,决定采用数据辅助式同步算法来解决基于IEEE 802.16-2004协议的突发传输系统的同步问题。最后部分进行了算法的实现和仿真,所有实现的仿真均在QuartusⅡ下按照IEEE 802.16-2004协议的符号和前导字的结构进行。 本文的主要工作:(1)采用自相关和互相关联合检测算法同时完成帧到达检测和符号同步估计,只用接收数据的符号位做相关运算,有效地解决了判决门限需要变化的问题,同时也减少了资源的消耗;(2)在时域分数倍频偏估计时,利用基于流水线结构的Cordic模块计算长前导字共轭相乘后的相角,求出分数倍频偏的估计值;(3)采用滑动窗口相关求和的方法估计整数倍频偏值,在此只用频域数据的符号位做相关运算,有效地解决了传统算法估计速度慢的缺点,同时也减少了资源的消耗。
上传时间: 2013-05-23
上传用户:宋桃子
在工业控制领域,多种现场总线标准共存的局面从客观上促进了工业以太网技术的迅速发展,国际上已经出现了HSE、Profinet、Modbus TCP/IP、Ethernet/IP、Ethernet Powerlink、EtherCAT等多种工业以太网协议。将传统的商用以太网应用于工业控制系统的现场设备层的最大障碍是以太网的非实时性,而实现现场设备间的高精度时钟同步是保证以太网高实时性的前提和基础。 IEEE 1588定义了一个能够在测量和控制系统中实现高精度时钟同步的协议——精确时间协议(Precision Time Protocol)。PTP协议集成了网络通讯、局部计算和分布式对象等多项技术,适用于所有通过支持多播的局域网进行通讯的分布式系统,特别适合于以太网,但不局限于以太网。PTP协议能够使异质系统中各类不同精确度、分辨率和稳定性的时钟同步起来,占用最少的网络和局部计算资源,在最好情况下能达到系统级的亚微级的同步精度。 基于PC机软件的时钟同步方法,如NTP协议,由于其实现机理的限制,其同步精度最好只能达到毫秒级;基于嵌入式软件的时钟同步方法,将时钟同步模块放在操作系统的驱动层,其同步精度能够达到微秒级。现场设备间微秒级的同步精度虽然已经能满足大多数工业控制系统对设备时钟同步的要求,但是对于运动控制等需求高精度定时的系统来说,这仍然不够。基于嵌入式软件的时钟同步方法受限于操作系统中断响应延迟时间不一致、晶振频率漂移等因素,很难达到亚微秒级的同步精度。 本文设计并实现了一种基于FPGA的时钟同步方法,以IEEE 1588作为时钟同步协议,以Ethernet作为底层通讯网络,以嵌入式软件形式实现TCP/IP通讯,以数字电路形式实现时钟同步模块。这种方法充分利用了FPGA的特点,通过准确捕获报文时间戳和动态补偿晶振频率漂移等手段,相对于嵌入式软件时钟同步方法实现了更高精度的时钟同步,并通过实验验证了在以集线器互连的10Mbps以太网上能够达到亚微秒级的同步精度。
上传时间: 2013-07-28
上传用户:heart520beat
安规方面 X电容与Y电容的设计与计算方法
上传时间: 2013-05-31
上传用户:gjzeus
频率是电子技术领域内的一个基本参数,同时也是一个非常重要的参数。稳定的时钟在高性能电子系统中有着举足轻重的作用,直接决定系统性能的优劣。随着电子技术的发展,测频系统使用时钟的提高,测频技术有了相当大的发展,但不管是何种测频方法,±1个计数误差始终是限制测频精度进一步提高的一个重要因素。 本设计阐述了各种数字测频方法的优缺点。通过分析±1个计数误差的来源得出了一种新的测频方法:检测被测信号,时基信号的相位,当相位同步时开始计数,相位再次同步时停止计数,通过相位同步来消除计数误差,然后再通过运算得到实际频率的大小。根据M/T法的测频原理,已经出现了等精度的测频方法,但是还存在±1的计数误差。因此,本文根据等精度测频原理中闸门时间只与被测信号同步,而不与标准信号同步的缺点,通过分析已有等精度澳孽频方法所存在±1个计数误差的来源,采用了全同步的测频原理在FPGA器件上实现了全同步数字频率计。根据全同步数字频率计的测频原理方框图,采用VHDL语言,成功的编写出了设计程序,并在MAX+PLUS Ⅱ软件环境中,对编写的VHDL程序进行了仿真,得到了很好的效果。最后,又讨论了全同步频率计的硬件设计并给出了电路原理图和PCB图。对构成全同步数字频率计的每一个模块,给出了较详细的设计方法和完整的程序设计以及仿真结果。
上传时间: 2013-04-24
上传用户:qqoqoqo
51单片机定时器时间计算工具,即是计算定时器溢出时间TH0,TL0也是研究51单片机定时器的软件模形。软件中分析了定时器的工作流程和寄存器功能。可以助你更深刻的了解51单片机定时器。
上传时间: 2013-06-13
上传用户:wengtianzhu
51单片机定时器时间计算工具,即是计算定时器溢出时间TH0,TL0也是研究51单片机定时器的软件模形。软件中分析了定时器的工作流程和寄存器功能。可以助你更深刻的了解51单片机定时器。
上传时间: 2013-05-24
上传用户:Aidane
本文从工程设计和应用出发,根据某机载设备直接序列扩频(DS-SS)接收机声表面波可编程抽头延迟线(SAW.P.TDL)中频相关解扩电路的指标要求,提出了基于FPGA器件的中频数字相关解扩器的替代设计方案,通过理论分析、软件仿真、数学计算、电路设计等方法和手段,研制出了满足使用环境要求的工程化的中频数字相关器,经过主要性能参数的测试和环境温度验证试验,并在整机上进行了试验和试用,结果表明电路性能指标达到了设计要求。对工程应用中的部分问题进行了初步研究和分析,其中较详细地分析了SAW卷积器、SAW.P.TDL以及中频数字相关器在BPSK直扩信号相关解扩时的频率响应特性。 论文的主要工作在于: (1)根据某机载设备扩频接收机基于SAW.P.TDL的中频解扩电路要求,进行理论分析、电路设计、软件编程,研制基于FPGA器件的中频数字相关器,要求可在扩频接收机中原位替代原SAW相关解扩电路; (2)对中频数字相关器的主要性能参数进行测试,进行了必要的高低温等环境试验,确定电路是否达到设计指标和是否满足高低温等环境条件要求; (3)将基于FPGA的中频数字相关器装入扩频接收机,与原SAW.P.TDL中频解扩电路置换,确定与接收机的电磁兼容性、与中放电路的匹配和适应性,测试整个扩频接收机的灵敏度、动态范围、解码概率等指标是否满足接收机模块技术规范要求; (4)将改进后的扩频接收机装入某机载设备,测试与接收机相关的性能参数,整机进行高低温等主要环境试验,确定电路变化后的整机设备各项指标是否满足其技术规范要求; (5)通过对基于FPGA的中频数字相关器与SAW.P.TDL的主要性能参数进行对比测试和分析,特别是电路对频率偏移响应特性的对比分析,从而得出初步的结论。
上传时间: 2013-06-22
上传用户:徐孺
基于单片机的频率计的实现和protuse仿真-Frequency meter based on single chip implementation and protuse simulation
上传时间: 2013-06-04
上传用户:杜莹12345
计算机图形学中真实感成像包括两部分内容:物体的精确图形表示;场景中光照效果的适当的描述。光照效果包括光的反射、透明性、表面纹理和阴影。对物体进行投影,然后再可见面上产生自然光照效果,可以实现场景的真实感显示。光照明模型主要用于物体表面某点处的光强度计算。面绘制算法是通过光照模型中的光强度计算,以确定场景中物体表面的所有投影像素点的光强度。Phong明暗处理算法是生成真实感3D图像最佳算法之一。但是由于其大量的像素级运算和硬件难度而在实现实时真实感图形绘制中被Gotuaud明暗处理算法所取代。VLSI技术的发展以及对于高真实感实时图形的需求使得Phong明暗处理算法的实现成为可能。利用泰勒级数近似的Fast Phong明暗处理算法适合硬件实现。此算法需要存储大量数据的ROM。这增加了实现的难度。 本文完成了以下工作: 1、本文简述了实时真实感图形绘制管线,详细叙述了所用到的光照明模型和明暗处理方法,并对几种明暗处理方法的效果作了比较,实验结果表明Fast Phong明暗处理算法适用于实时真实感图形绘制。 2、在熟悉Xilinx公司FPGA芯片结构及其开发流程的基础上,结合Xilinx公司提供的FPGA开发工具ISE 7.1i,仿真工具为ISE simulator,综合工具为XST;完成了Fast Phong明暗处理模块的FPGA设计与实现。综合得到的电路的最高频率为54.058MHz。本文的Fast Phong明暗处理硬件模块适用于实时真实感图形绘制。 3、本文通过误差分析,提出了优化的查找表结构。通过在FPGA上对本文所提结构进行验证。结果表明,本方案在提高速度、精度的同时将ROM的数据量从64K*8bit减少至13K*8bit。
上传时间: 2013-06-21
上传用户:ghostparker
供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
上传时间: 2013-05-29
上传用户:dylutao