虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

遍历

  • 改进的基于模型匹配的快速目标识别

    文中建立不同类型目标的模型匹配数据库;采用最小周长多边形构造目标主体轮廓的近似多边形,以简化目标主体轮廓减少算法处理的数据量;提取具有仿射不变性的多边形顶点个数、最长线段两侧顶点个数、同底三角形面积比向量特征不变量对待识别目标进行描述,应用3个特征量在模型匹配数据库中逐一进行分层遍历搜索匹配。实验表明,基于模型匹配的目标识别算法能够快速的识别目标,提高了目标识别的实时性,同时能够判定目标所处的姿态状况。

    标签: 模型匹配 目标识别

    上传时间: 2013-10-20

    上传用户:q3290766

  • 一种配电网拓扑跟踪方法及其应用

    为了满足实时跟踪的需求,在分析了3种配电网拓扑跟踪算法的基础上,提出了一种电网全局以母线为节点遍历和设备单元局部更新相结合的新型实时跟踪算法。为了便于说明算法的应用,文中还对电网拓扑变化和跟踪算法进行了阐述。最后在一个大型钢铁企业的配电网仿真系统中进行了实际的应用,该仿真说明了该跟踪算法是有效的。

    标签: 配电网 拓扑

    上传时间: 2013-11-06

    上传用户:zhuce80001

  • 基于PIC16F877A的混沌信号发生器的设计

    混沌科学得到广泛研究应该得益于20世纪60年代洛伦兹(Lorenz)的“蝴蝶效应”。混沌信号具有初值敏感性、内随机性、遍历性和有界性等特点,近几年得到深入的研究和探索,并开始广泛应用于信号处理、保密通信、生物医学等领域,特别是在医疗器械的应用,有着重大的突破。科学研究表明:生物体是一个高度的非线性系统,而非线性系统的运动通常表现出混沌现象,人体的生理活动呈现众多的混沌现象。所以,研究混沌信号源的产生对生物医学的研究有着极其重要的意义。

    标签: F877 877A PIC 16F

    上传时间: 2013-11-10

    上传用户:xdqm

  • 一种OFDM系统峰均比的改良PTS算法

    部分传输序列(PTS)方法通过选择合适的相位序列以降低信号峰值出现的概率,该方法不会使信号发生畸变。但是传统的 PTS 技术计算复杂度非常大,需遍历所有可选的相位因子,其计算量随分割子序列数按指数增长。本文提出了一种正倒二叉树多层相位序列方法,该方法通过对称的树形搜索,搜索出最优的相位序列。仿真结果表明,该方法大大降低系统的复杂度,同时 PAPR 得到更好地抑制。

    标签: OFDM PTS 峰均比

    上传时间: 2013-11-10

    上传用户:zjf3110

  • Arduino学习笔记4_Arduino软件模拟PWM

    注:1.这篇文章断断续续写了很久,画图技术也不精,难免错漏,大家凑合看.有问题可以留言.      2.论坛排版把我的代码缩进全弄没了,大家将代码粘贴到arduino编译器,然后按ctrl+T重新格式化代码格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脉宽调制波,通过调整输出信号占空比,从而达到改 变输出平均电压的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 个8 位精度PWM 引脚,分别是3, 5, 6, 9, 10, 11 脚。我们可以使用analogWrite()控 制PWM 脚输出频率大概在500Hz 的左右的PWM 调制波。分辨率8 位即2 的8 次方等于 256 级精度。但是有时候我们会觉得6 个PWM 引脚不够用。比如我们做一个10 路灯调光, 就需要有10 个PWM 脚。Arduino Duemilanove 2009 有13 个数字输出脚,如果它们都可以 PWM 的话,就能满足条件了。于是本文介绍用软件模拟PWM。 二、Arduino 软件模拟PWM Arduino PWM 调压原理:PWM 有好几种方法。而Arduino 因为电源和实现难度限制,一般 使用周期恒定,占空比变化的单极性PWM。 通过调整一个周期里面输出脚高/低电平的时间比(即是占空比)去获得给一个用电器不同 的平均功率。 如图所示,假设PWM 波形周期1ms(即1kHz),分辨率1000 级。那么需要一个信号时间 精度1ms/1000=1us 的信号源,即1MHz。所以说,PWM 的实现难点在于需要使用很高频的 信号源,才能获得快速与高精度。下面先由一个简单的PWM 程序开始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 这是一个软件PWM 控制Arduino D13 引脚的例子。只需要一块Arduino 即可测试此代码。 程序解析:由for 循环可以看出,完成一个PWM 周期,共循环255 次。 假设bright=100 时候,在第0~100 次循环中,i 等于1 到99 均小于bright,于是输出PWMPin 高电平; 然后第100 到255 次循环里面,i 等于100~255 大于bright,于是输出PWMPin 低电平。无 论输出高低电平都保持30us。 那么说,如果bright=100 的话,就有100 次循环是高电平,155 次循环是低电平。 如果忽略指令执行时间的话,这次的PWM 波形占空比为100/255,如果调整bright 的值, 就能改变接在D13 的LED 的亮度。 这里设置了每次for 循环之后,将bright 加一,并且当bright 加到255 时归0。所以,我们 看到的最终效果就是LED 慢慢变亮,到顶之后然后突然暗回去重新变亮。 这是最基本的PWM 方法,也应该是大家想的比较多的想法。 然后介绍一个简单一点的。思维风格完全不同。不过对于驱动一个LED 来说,效果与上面 的程序一样。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,这段代码少了一个For 循环。它先输出一个高电平,然后维持(bright*30)us。然 后输出一个低电平,维持时间((255-bright)*30)us。这样两次高低就能完成一个PWM 周期。 分辨率也是255。 三、多引脚PWM Arduino 本身已有PWM 引脚并且运行起来不占CPU 时间,所以软件模拟一个引脚的PWM 完全没有实用意义。我们软件模拟的价值在于:他能将任意的数字IO 口变成PWM 引脚。 当一片Arduino 要同时控制多个PWM,并且没有其他重任务的时候,就要用软件PWM 了。 多引脚PWM 有一种下面的方式: int brights[14] = {0}; //定义14个引脚的初始亮度,可以随意设置 int StartPWMPin = 0, EndPWMPin = 13; //设置D0~D13为PWM 引脚 int PWMResolution = 255; //设置PWM 占空比分辨率 void setup() { //定义所有IO 端输出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //随便定义个初始亮度,便于观察 brights[ i ] = random(0, 255); } } void loop() { //这for 循环是为14盏灯做渐亮的。每次Arduino loop()循环, //brights 自增一次。直到brights=255时候,将brights 置零重新计数。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是计数一个PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每个PWM 周期均遍历所有引脚 { if(i < brights[j])\   所以我们要更改PWM 周期的话,我们将精度(代码里面的变量:PWMResolution)降低就行,比如一般调整LED 亮度的话,我们用64 级精度就行。这样速度就是2x32x64=4ms。就不会闪了。

    标签: Arduino PWM 软件模拟

    上传时间: 2013-10-08

    上传用户:dingdingcandy

  • 基于图像检索的地标识别系统

    设计并实现了基于图像检索的地标识别系统。该系统通过捕捉地标的视觉特征,帮助游客或使用者更好地理解图像的内容并同时提供图像拍摄的地理位置信息。首先根据提取的SURF特征搜寻地标在数据库中的最优匹配,然后根据最优匹配结果给出输入地标在地图中的位置。系统采用的层次化数据库结构和分级检索方式,使得检索效率比传统的遍历检索方式提高30%。大量实验证明文中提出的算法具有鲁棒性和高准确性,该系统已在高校内部地标识别中测试使用成功。

    标签: 图像检索 地标识别

    上传时间: 2013-12-29

    上传用户:CSUSheep

  • Arduino学习笔记4_Arduino软件模拟PWM

    注:1.这篇文章断断续续写了很久,画图技术也不精,难免错漏,大家凑合看.有问题可以留言.      2.论坛排版把我的代码缩进全弄没了,大家将代码粘贴到arduino编译器,然后按ctrl+T重新格式化代码格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脉宽调制波,通过调整输出信号占空比,从而达到改 变输出平均电压的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 个8 位精度PWM 引脚,分别是3, 5, 6, 9, 10, 11 脚。我们可以使用analogWrite()控 制PWM 脚输出频率大概在500Hz 的左右的PWM 调制波。分辨率8 位即2 的8 次方等于 256 级精度。但是有时候我们会觉得6 个PWM 引脚不够用。比如我们做一个10 路灯调光, 就需要有10 个PWM 脚。Arduino Duemilanove 2009 有13 个数字输出脚,如果它们都可以 PWM 的话,就能满足条件了。于是本文介绍用软件模拟PWM。 二、Arduino 软件模拟PWM Arduino PWM 调压原理:PWM 有好几种方法。而Arduino 因为电源和实现难度限制,一般 使用周期恒定,占空比变化的单极性PWM。 通过调整一个周期里面输出脚高/低电平的时间比(即是占空比)去获得给一个用电器不同 的平均功率。 如图所示,假设PWM 波形周期1ms(即1kHz),分辨率1000 级。那么需要一个信号时间 精度1ms/1000=1us 的信号源,即1MHz。所以说,PWM 的实现难点在于需要使用很高频的 信号源,才能获得快速与高精度。下面先由一个简单的PWM 程序开始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 这是一个软件PWM 控制Arduino D13 引脚的例子。只需要一块Arduino 即可测试此代码。 程序解析:由for 循环可以看出,完成一个PWM 周期,共循环255 次。 假设bright=100 时候,在第0~100 次循环中,i 等于1 到99 均小于bright,于是输出PWMPin 高电平; 然后第100 到255 次循环里面,i 等于100~255 大于bright,于是输出PWMPin 低电平。无 论输出高低电平都保持30us。 那么说,如果bright=100 的话,就有100 次循环是高电平,155 次循环是低电平。 如果忽略指令执行时间的话,这次的PWM 波形占空比为100/255,如果调整bright 的值, 就能改变接在D13 的LED 的亮度。 这里设置了每次for 循环之后,将bright 加一,并且当bright 加到255 时归0。所以,我们 看到的最终效果就是LED 慢慢变亮,到顶之后然后突然暗回去重新变亮。 这是最基本的PWM 方法,也应该是大家想的比较多的想法。 然后介绍一个简单一点的。思维风格完全不同。不过对于驱动一个LED 来说,效果与上面 的程序一样。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,这段代码少了一个For 循环。它先输出一个高电平,然后维持(bright*30)us。然 后输出一个低电平,维持时间((255-bright)*30)us。这样两次高低就能完成一个PWM 周期。 分辨率也是255。 三、多引脚PWM Arduino 本身已有PWM 引脚并且运行起来不占CPU 时间,所以软件模拟一个引脚的PWM 完全没有实用意义。我们软件模拟的价值在于:他能将任意的数字IO 口变成PWM 引脚。 当一片Arduino 要同时控制多个PWM,并且没有其他重任务的时候,就要用软件PWM 了。 多引脚PWM 有一种下面的方式: int brights[14] = {0}; //定义14个引脚的初始亮度,可以随意设置 int StartPWMPin = 0, EndPWMPin = 13; //设置D0~D13为PWM 引脚 int PWMResolution = 255; //设置PWM 占空比分辨率 void setup() { //定义所有IO 端输出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //随便定义个初始亮度,便于观察 brights[ i ] = random(0, 255); } } void loop() { //这for 循环是为14盏灯做渐亮的。每次Arduino loop()循环, //brights 自增一次。直到brights=255时候,将brights 置零重新计数。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是计数一个PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每个PWM 周期均遍历所有引脚 { if(i < brights[j])\   所以我们要更改PWM 周期的话,我们将精度(代码里面的变量:PWMResolution)降低就行,比如一般调整LED 亮度的话,我们用64 级精度就行。这样速度就是2x32x64=4ms。就不会闪了。

    标签: Arduino PWM 软件模拟

    上传时间: 2013-10-23

    上传用户:mqien

  • 二叉树的算法

    二叉树的算法,先序建立,中序遍历

    标签: 二叉树 算法

    上传时间: 2013-12-25

    上传用户:AbuGe

  • 里面装有 5 个小程序

    里面装有 5 个小程序,分别是:0-1背包问题、二叉树遍历、链式表的实现、迷宫路径、资源最优配置算法。每个程序都有详细的说明,是我这两个学期所做的实验的一部分。

    标签: 程序

    上传时间: 2015-02-07

    上传用户:erkuizhang

  • 数据结构的一些简单编程题,二叉树结构

    数据结构的一些简单编程题,二叉树结构,遍历的递归于非递归算法

    标签: 数据结构 二叉树 编程

    上传时间: 2014-01-18

    上传用户:hj_18