近年来,语音识别研究大部分集中在算法设计和改进等方面,而随着半导体技术的高速发展,集成电路规模的不断增大与各种研发技术水平的不断提高,新的硬件平台的推出,语音识别实现平台有了更多的选择。语音识别技术在与DSP、FPGA、ASIC等器件为平台的嵌入式系统结合后,逐渐向实用化、小型化方向发展。 本课题通过对现有各种语音特征参数与孤立词语音识别模型进行研究的基础上,重点探索基于动态时间规整算法的DTW模型在孤立词语音识别领域的应用,并结合基于FPGA的SOPC系统,在嵌入式平台上实现具有较好精度与速度的孤立词语音识别系统。 本系统整体设计基于DE2开发平台,采用基于Nios II的SOPC技术。采用这种解决方案的优点是实现了片上系统,减少了系统的物理体积和总体功耗;同时系统控制核心都在FPGA内部实现,可以极为方便地更新和升级系统,大大地提高了系统的通用性和可维护性。 此外,由于本系统需要大量的高速数据运算,在设计中作者充分利用了Cyclone II芯片的丰富的硬件乘法器,实现了语音信号的端点检测模块,FFT快速傅立叶变换模块,DCT离散余弦变换模块等硬件设计模块。为了提高系统的整体性能,作者充分利用了FPGA的高速并行的优势,以及配套开发环境中的Avalon总线自定义硬件外设,使系统处理数字信号的能力大大提高,其性能优于传统的微控制器和普通DSP芯片。 本论文主要包含了以下几个方面: (1)结合ALTERA CYCLONE II芯片的特点,确定了基于FPGA语音识别系统的总体设计,在此基础上进行了系统的软硬件的选择和设计。 (2)自主设计了纯硬件描述语言的驱动电路设计,完成了高速语音采集的工作,并且对存储数据芯片SRAM中的原始语音数据进行提取导入MATLAB平台测试数据的正确性。整个程序测试的方式对系统的模块测试起到重要的作用。 (3)完成高速定点256点的FFT模块的设计,此模块是系统成败的关键,实现高速实时的运算。 (4)结合SOPC的特性,设计了人机友好接口,如LCD显示屏的提示反馈信息等等,以及利用ALTERA提供的一些驱动接口设计完成用户定制的系统。 (5)进行了整体系统测试,系统可以较稳定地实现实时处理的目的,具有一定的市场潜在价值。
上传时间: 2013-05-23
上传用户:ABCD_ABCD
随着计算机科学在人机交互领域的极大发展,作为人脸信息处理中的一项关键技术,人脸检测现在已经成为模式识别,计算机视觉和人机交互领域不可缺少的一部分。但是,人脸检测算法存在计算量大、速度慢等缺点。软件实现方式无法达到实时处理要求,而现有的硬件实现需要占用大量硬件资源。 本文针对现有人脸检测硬件实现的缺点,通过对Adaboost算法和现有硬件结构的分析,提出了双流水线硬件检测架构:扫描窗口流水线、特征向量流水线。并在Vertex-II Pro FPGA平台验证成功,达到实时检测的标准。具体工作和创新点包括如下几点: 介绍了人脸检测的原理以及人脸检测经典算法。其中,详细介绍了Adaboost算法。 对现有的结构进行详细分析。指出现有各架构的缺点,即资源占用多,检测速度慢。针对这两个问题,本文提出了一个适合嵌入式应用的扫描窗口、特征向量双流水线检测硬件架构,详细说明了该架构的工作原理,并在该架构基础上,通过加入预测加载技术,进一步提高检测速度。随后,采用存储器访问效率,架构内部存储单元大小,检测时间长短,运算单元数量四个标准,详细比较了新架构和现有架构的差别,显示出新架构的优势。 基于提出的架构,给出了Adaboost人脸检测系统的VLSI实现方案。本文中,采用自顶向下的设计方法将人脸检测系统分成若干个子模块,然后对每个子模块进行详细的设计和说明,给出了每个子模块的硬件架构、状态转换以及verilog实现后的仿真波形。 采用Xilinx公司的VII Pro FPGA开发板完成人脸检测系统的硬件验证。FPGA验证结果表明对于QCIF分辨率的视频图像,人脸检测系统能够达到50fps的检测速度,满足实时检测的要求。
上传时间: 2013-06-15
上传用户:1193169035
本文提出了一种基于FPGA的细胞图像识别系统方案,该系统中FPGA处于核心地位,FPGA采用Altera公司的EP1K100QC208-1芯片,构造专用处理功能,实现彩色图像灰度化、灰度变换、中值滤波、低通滤波、灰度图像二值化等算法。这部分处理的数据量非常大,由于采用FPGA处理,产生的时延变得很小;最后系统机进行识别处理的是二值图像,数据量也很小。所进行的仿真实验取得了良好的效果,给出了部分源代码和实验结果。设计采用VHDL语言描述,并使用电子设计自动化(EDA)工具进行了模拟和验证。
上传时间: 2013-04-24
上传用户:xwd2010
在变强噪音的情况下,语音识别的正确率会迅速下降;当噪声较强并且强度不断发生变化的时候,端点检测是一个难题;提出了两种方法保证噪声较强而且强度不断发生改变情况下的语音识别率:基于LPC距离的端点检测算法
上传时间: 2013-07-19
上传用户:chongcongying
语音识别技术就是能使计算机“听懂”人类的语言,然后根据其含义来执行相应的命令,从而实现为人类服务。 随着语音识别的深入研究,对它的技术应用主要有两个方面: 一个方向是大词汇量连续语音识别系统,主要应用于计算机的听写机,以及与电话网或者互联网相结合的语音信息查询服务系统,这些系统都是在计算机平台上实现的; 另外一个重要的发展方向是小型化、便携式语音产品的应用,这些应用系统大都使用专门的硬件系统实现。 随着后PC年代的到来,后一种发展将成为语音识别技术和嵌入式系统交叉研究的一个非常热门的话题,将进一步推动语音识别技术往智能化方向发展。 论文主要研究语音识别系统及其在ARM嵌入式平台上的实现。 根据嵌入式系统平台的特性和系统的实际需求,对目标平台的硬件和软件系统进行适当的剪裁定制,并且对语音识别中的算法进行改进和优化,同时为了加强系统的交互性,增加了控制界面,为实际应用提供很好的人机交互操作。 首先论文对嵌入式系统及嵌入式操作系统进行研究,通过实际比较后选用嵌入式Linux作为系统的操作系统; 然后对语音识别技术进行研究,并根据实际要求,采用Mel倒谱参数作为系统语音参数提取算法,DTW作为系统识别的模式匹配方法,并根据ARM嵌入式平台的要求,分别对上述两个算法进行优化设计,同时利用QT跨平台语言对应用控制程序进行代码实现,并移植到目标板上,构建出一个完整的嵌入式语音识别系统。 最后,对整个系统进行整体测试,通过实验结果表明,系统达到了预期设计的便携、智能及很好的交互性的目的。
上传时间: 2013-04-24
上传用户:1054154823
条码技术是随通信技术,计算机技术的发展应运而生的自动识别技术的一种。根据二进制编码规则对应形成的由对光反映率不同的条、空组成的图形,经光电扫描识读器扫描,将采集的信息经处理器进行处理,从而达到自动识别的目的。条码技术自出现以来,得到了人们的普遍关注,发展十分迅速,已广泛用于交通运输、商业、医疗卫生、制造业、仓储业、邮电业等领域,极大的提高了数据采集和信息处理的速度,提高了工作效率,并为管理的科学化、信息化和现代化作出了贡献。目前常用的是一维条码,但一维条码最大的弱点就是表征的信息量是有限的,需要依赖外部数据库支持,离开这个数据库条码本身就没有意义了。二维条码克服了这一弱点,它是在一维条码基础上形成的高密度、高信息量的条码,可以将大量信息在小区域内编码,它本身就是一个完整的数据文件,是实现证件、卡片等信息存储、携带并可以通过机器自动识读的理想方法。 本课题采用流行的嵌入式技术,采用S3C44BOX作为二维条码PDF417识别器的数据采集终端,该终端内嵌μC/OS-Ⅱ操作系统,将应用分解成多任务,简化了应用系统软件设计;使控制系统的实时性得到了保证,提高了系统的可靠性和稳定性;同时也增强了系统的可扩展性和产品开发的可延续性。 本课题的主要任务是PDF417(Portable Data File)二维条码图像的识别。先由扫描仪或照相机获取二维条码的原始图像,再由PC(Personal Computer)计算机中的图象处理程序对图象数据进行处理,然后在条码中定位单个码字符号的图像,利用算法识别出单个码字符号。本文在条码图像的预处理方面进行了算法改进,取得了较好的成果,能够有效的去掉干扰噪声和图像定位。通过实验结果表明:本课题研究的二维条码识别系统是比较令人满意的。
上传时间: 2013-08-01
上传用户:caiiicc
语音识别是通过识别和理解过程把人类的语音信号转变为文本或命令的技术。近年来语音识别技术由于其重要性和研究难度成为研究的热点。随着嵌入式的发展,嵌入式语音识别技术成为语音识别领域发展的新的重要方向。 在此背景下,本课题进行基于ARM的嵌入式语音识别系统的研究。论文分别从理论分析、系统硬件平台的总体设计、系统软件的分析定制等方面,对语音识别在ARM上的应用做了研究。 1、在理论上,详细介绍了语音识别的发展历史与研究现状;具体阐述语音识别技术的基本原理和主要研究方法,并推导了语音识别技术中最常用到的两种算法DTW和HMM的数学模型,为进一步的语音识别研究打下基础。 2、在硬件平台方面,本文分析设计了语音识别系统的总体方案,主要包括以下三部分:语音识别系统的控制部分、语音的输入输出部分以及语音程序的存储部分;文中详细介绍了各部分的作用以及它们之间的连接方式,此外根据实际需要,选择确定了语音芯片等外围电路芯片的型号并扩展了外围电路。 3、在系统软件选择定制方面,不仅要求各部分自身功能完善,能够满足本课题的需求,而且要求各部分相互之间满足一定的兼容性,即定制的系统具有稳定性,可以有效的工作。考虑到以上的因素,本课题针对特定的语音识别系统的需求,对交叉编译环境、U-boot、内核、根文件系统等均进行了量身定制。最终选用Crosstool来制作专门编译Linux-2.6.22.6的交叉编译工具;选用比较稳定的支持tftp下载的u-boot-1.2.0作为引导程序;选用Linux-2.6.22.6作为嵌入式操作系统内核,并对其进行剪裁定制,特别是增加了UDA1341TS音频驱动和网卡驱动部分;选用了带有mdev功能的busybox-1.9.1来制作根文件系统。 在以上三方面的基础上,本课题对语音识别程序系统进行了实验研究。实验包括音频驱动、语音录制、语音训练、语音识别程序的编译以及语音识别等程序在ARM上的移植。 最后,本论文采用DTW模型,完成了语音模板的训练和语音识别的任务。经过实验测试,该系统有效完成了预期的语音识别任务。
上传时间: 2013-05-30
上传用户:wsx123
基于小波变换和神经网络理论,对非稳定、大信噪比(SNR)变化的通信信号进行有效的特征提取和分类,实现了通信信号调制方式的分类识别.首先,采用基于多分辨分析框架的Mallat快速算法提取离散细节作为特征采,实验得出db3小波非常适合作为特征提取小波,用小波变换大大压缩了通信信号特征矢量,提取的信号特征矢量64点;然后依据神经网络理论,分别采用BP网络作为分类器对通信信号调制识别分类.从计算机模拟实验结果可知,该方法能很好地完成通信信号调制识别分类任务,使识别正确率得到了明显改善,同时降低了识别分类过程的复杂度,并且为通信信号调制识别的DSP实现提供了快速计算的理论基础.其次,介绍了TMS320LF2407 DSP和FPGA的结构原理,并在此基础上设计了数字信号处理板和制作调试电路板.最后,用汇编和C语言编制A/D程序、串口通信程序和应用程序,并在信号处理板上调试和运行.
上传时间: 2013-07-23
上传用户:731140412
随着计算机与信息技术的发展,生物特征识别技术受到了广泛的关注。指纹识别是生物特征识别中的一项重要内容,一直以来是国内外的研究热点。 嵌入式自动指纹识别是指指纹识别技术在嵌入式系统上的应用。传统的嵌入式自动指纹识别系统多采用单片DSP或MIPS处理器来完成算法,由于DSP或MIPS处理器只能根据程序顺序执行,在指纹匹配过程中只能和整个库中的指纹进行一一匹配,因此这类系统在处理较大指纹库时下匹配时间相当长。为了克服这个缺点,本文构建了浮点DSP和FPGA协同处理构架的硬件平台,充分利用DSP在计算上的精确度和FPGA并行处理的特点,由DSP和FPGA共同处理匹配算法。 本文的主要工作如下: 1.设计了一个硬件系统,包括DSP处理器、FPGA、指纹传感器、人机交互接口和USB1.1接口。同时,还设计了各硬件模块的驱动程序,为应用程序提供控制接口。由于系统中DSP工作频率为300MHz,其中某些器件的工作频率达到了100MHz,因此本文还给出了一些信号完整性分析和PCB设计经验。 2.编写了Verilog程序,在FPGA中实现了9路指纹的并行匹配。由于FPGA本身的局限性,实现原有匹配算法有很大困难。在简化原有匹配算法的基础上本文提出了便于FPGA实现“粗匹配”算法。此外,还设计了用于和DSP通信的接口模块设计。 3.完成了系统应用程序设计。在使用uC/OS-Ⅱ实时操作系统的基础上设计了各系统任务,通过调用驱动程序控制和协调各硬件模块,实现了自动指纹识别功能。为了便于存放指纹特征信息,设计了指纹库数据结构,实现了指纹库添加、删除、编辑的功能。 最终,本系统实现了高效、快速的进行指纹识别,各模块工作稳定。同时,模块化的软硬件设计使本系统便于进行二次开发,快速应用于各种场合。
上传时间: 2013-06-05
上传用户:guanliya
·详细说明:语音识别配套的VQ及DHMM模型训练程序,C语言,已经定点化,可直接移植到8位MCU或16位DSP中。与目前市面的语音识别玩具的算法基本一致,非常实用,仅供大家参考,别去抢人家饭碗才好.
上传时间: 2013-07-31
上传用户:84425894