条码技术是随通信技术,计算机技术的发展应运而生的自动识别技术的一种。根据二进制编码规则对应形成的由对光反映率不同的条、空组成的图形,经光电扫描识读器扫描,将采集的信息经处理器进行处理,从而达到自动识别的目的。条码技术自出现以来,得到了人们的普遍关注,发展十分迅速,已广泛用于交通运输、商业、医疗卫生、制造业、仓储业、邮电业等领域,极大的提高了数据采集和信息处理的速度,提高了工作效率,并为管理的科学化、信息化和现代化作出了贡献。目前常用的是一维条码,但一维条码最大的弱点就是表征的信息量是有限的,需要依赖外部数据库支持,离开这个数据库条码本身就没有意义了。二维条码克服了这一弱点,它是在一维条码基础上形成的高密度、高信息量的条码,可以将大量信息在小区域内编码,它本身就是一个完整的数据文件,是实现证件、卡片等信息存储、携带并可以通过机器自动识读的理想方法。 本课题采用流行的嵌入式技术,采用S3C44BOX作为二维条码PDF417识别器的数据采集终端,该终端内嵌μC/OS-Ⅱ操作系统,将应用分解成多任务,简化了应用系统软件设计;使控制系统的实时性得到了保证,提高了系统的可靠性和稳定性;同时也增强了系统的可扩展性和产品开发的可延续性。 本课题的主要任务是PDF417(Portable Data File)二维条码图像的识别。先由扫描仪或照相机获取二维条码的原始图像,再由PC(Personal Computer)计算机中的图象处理程序对图象数据进行处理,然后在条码中定位单个码字符号的图像,利用算法识别出单个码字符号。本文在条码图像的预处理方面进行了算法改进,取得了较好的成果,能够有效的去掉干扰噪声和图像定位。通过实验结果表明:本课题研究的二维条码识别系统是比较令人满意的。
上传时间: 2013-08-01
上传用户:caiiicc
语音识别是通过识别和理解过程把人类的语音信号转变为文本或命令的技术。近年来语音识别技术由于其重要性和研究难度成为研究的热点。随着嵌入式的发展,嵌入式语音识别技术成为语音识别领域发展的新的重要方向。 在此背景下,本课题进行基于ARM的嵌入式语音识别系统的研究。论文分别从理论分析、系统硬件平台的总体设计、系统软件的分析定制等方面,对语音识别在ARM上的应用做了研究。 1、在理论上,详细介绍了语音识别的发展历史与研究现状;具体阐述语音识别技术的基本原理和主要研究方法,并推导了语音识别技术中最常用到的两种算法DTW和HMM的数学模型,为进一步的语音识别研究打下基础。 2、在硬件平台方面,本文分析设计了语音识别系统的总体方案,主要包括以下三部分:语音识别系统的控制部分、语音的输入输出部分以及语音程序的存储部分;文中详细介绍了各部分的作用以及它们之间的连接方式,此外根据实际需要,选择确定了语音芯片等外围电路芯片的型号并扩展了外围电路。 3、在系统软件选择定制方面,不仅要求各部分自身功能完善,能够满足本课题的需求,而且要求各部分相互之间满足一定的兼容性,即定制的系统具有稳定性,可以有效的工作。考虑到以上的因素,本课题针对特定的语音识别系统的需求,对交叉编译环境、U-boot、内核、根文件系统等均进行了量身定制。最终选用Crosstool来制作专门编译Linux-2.6.22.6的交叉编译工具;选用比较稳定的支持tftp下载的u-boot-1.2.0作为引导程序;选用Linux-2.6.22.6作为嵌入式操作系统内核,并对其进行剪裁定制,特别是增加了UDA1341TS音频驱动和网卡驱动部分;选用了带有mdev功能的busybox-1.9.1来制作根文件系统。 在以上三方面的基础上,本课题对语音识别程序系统进行了实验研究。实验包括音频驱动、语音录制、语音训练、语音识别程序的编译以及语音识别等程序在ARM上的移植。 最后,本论文采用DTW模型,完成了语音模板的训练和语音识别的任务。经过实验测试,该系统有效完成了预期的语音识别任务。
上传时间: 2013-05-30
上传用户:wsx123
生物识别技术代表了未来身份验证技术的发展方向,而指纹识别技术又是最可靠、最有效的生物识别技术之一。目前,指纹识别技术是优于其它生物识别技术的身份鉴别方法。这是因为人的指纹各不相同、终生基本不变的特点已经得到公认,特别是现有的指纹识别算法已达到识别迅速、准确可靠的水平,是完全可以商业化的生物识别技术。 传统的指纹识别系统多是基于PC平台,这种系统将指纹图像处理和指纹匹配甚至指纹采集控制都放在PC平台上,在获得了较高速度和开发效率的同时,缺点也是显而易见的,其体积庞大,成本较高。而已有的嵌入式指纹识别系统多是基于单片机和DSP的,不是在运算速度上受到硬件限制,就是在系统的扩展性、可维护性及用户交互上有诸多不足。 近年来指纹识别应用的普及对自动指纹识别系统的便携性和易用性提出了更高的要求,指纹识别技术正向着小型化和嵌入式的方向发展。在微电子领域,以ARM、DSP、FPGA为代表的嵌入式微处理器的性能飞速提高,为构建嵌入式系统提供了硬件保证。 ARM是当前最为流行的32位RISC处理器架构,目前ARM占RISC处理器市场的七成左右。三星公司的S3C2410是基于ARM920T内核的通用32位微处理器,它具有高性能和低功耗的特性,被设计用于手持设备和通用嵌入式系统。 嵌入式系统对操作系统和其上运行的软件有特别的要求。针对本课题所采用的ARM硬件平台,详细介绍了嵌入式操作系统Arm-Linux的移植。分别说明了交叉编译工具链的安装、引导装载器的移植和Linux内核的裁减和交叉编译过程。为了运行应用程序,还介绍了文件系统的构建。 指纹识别系统需要指纹采集设备。FPS200是Veridicom公司推出的第三代半导体指纹传感器,是一款专为嵌入式系统设计的高性能、低成本、低功耗的电容式固态指纹传感器。本文详细阐述了基于FPS200的USB接口指纹采集卡的设计与实现。 指纹图像处理与匹配是整个系统的重要环节,论文介绍了图像处理与匹配的一般概念,并提出了新的指纹匹配方法。指纹匹配是自动指纹识别中的一个难点。现有的指纹匹配方法大致可以归结为图形匹配和人工神经网络匹配两大类,本文提出的基于线段的特征点匹配算法属于图形匹配。 嵌入式系统需要完善的软件支持。随着嵌入式技术的飞速发展,用户交互界面也由传统的字符界面向图形界面转变,图形用户界面系统得到了长足的发展。MiniGUI 是一个非常适合于工业控制实时系统以及嵌入式系统的可定制的、小巧的图形用户界面支持系统。本文介绍了基于MiniGUI的可视化指纹识别软件设计。 综上所述,本文针对特定硬件条件,构建了定制的嵌入式操作系统;设计了支持USB数据传输的指纹采集卡;指纹图像的滤波、提取特征和指纹特征匹配均针对嵌入式系统的实际情况进行了优化;利用MiniGUI图形支持库完成了界面美观友好的可视化指纹识别程序。系统具有安全可靠、易于扩展、性价比高等优点。
上传时间: 2013-08-02
上传用户:小儒尼尼奥
基于彩色路径识别的视觉导航方法是当前自动导航小车领域的研究热点和方向。视觉导航是指根据地面路径和被控对象之间的位置偏差控制其运行的方向,因此,地面彩色路径图像的摄取及其识别处理就成为视觉导航系统中的基础和关键。在当前的视觉导航系统设计中,图像处理的硬件平台都是基于通用微处理器,嵌入式微处理器或者DSP进行设计的。这些处理器一个共同的特点就是数据串行处理,而图像处理过程涉及大量的并行处理操作,因此传统的串行处理方式满足不了图像处理的实时性要求。 鉴于微处理器这方面的不足,作者提出一种使用FPGA实现图像识别的并行处理方案,并据此设计一个智能图像传感器。该传感器采用先进的FPGA技术,将图像采集及其显示,路径的识别处理以及通信控制等模块集成在一个芯片上,形成一个片上系统(SOC)。其主要功能是对所采集的彩色路径图像进行识别处理,获得彩色路径的坐标及其方向角,并将处理结果发送给上位机,为自动导航提供控制依据。 本文将彩色路径的识别处理过程划分为三个阶段,第一阶段为颜色聚类识别,以获得二值路径图像,第二阶段为数学形态学运算,用于对第一阶段中获得的二值图像进行去斑处理,第三阶段为路径中心线的定位及其方向角的测量。图像传感器与上位机的通信采用异步串行方式,由于上位机需要控制该传感器执行多种任务,作者定义一种基于异步串行通信的应用层协议,用于上位机对传感器的控制。在图像的显示中,为了弥补图像采集的速率和VGA显示速率的不匹配,作者提出一种基于单端口存储器的图像帧缓冲机制,通过VGA接口将采集的图像实时地显示出来。 根据上述思想,作者完成了系统的硬件电路设计,并对整个系统进行了现场调试。调试结果表明,传感器系统的各个模块都能正常工作,FPGA中的数字逻辑电路能够实时地将路径从图像中准确地识别出来,.充分体现了FPGA对路径图像的高速处理优势,达到了设计预期目标,在一定程度上丰富了路径图像识别处理的技术和方法。
上传时间: 2013-04-24
上传用户:ghostparker
随着 EDA 技术及微电子技术的飞速发展,现场可编程门阵列(Field Programmable Gate Array,简称 FPGA)的性能有了大幅度的提高,FPGA的设计水平也达到了一个新的高度。基于FPGA的嵌入式系统设计为现代电子产品设计带来了更大的灵活性,以Nios Ⅱ软核处理器为核心的SOPC(System on Programmable Chip)系统便是把嵌入式系统应用在FPGA上的典型例子,本文设计的指纹识别模块就是基于FPGA的Nios Ⅱ处理器为核心的SOPC设计。通过IP核技术和灵活的软硬件编程,实现Nios Ⅱ对FPGA外围器件的控制,并对指纹处理算法进行了改进,研究了指纹识别算法到Nios Ⅱ系统的移植。 本文首先阐述了指纹识别模块的SOPC设计方案,然后是对模块的详细设计。在硬件方面,完成了指纹识别模块的 FPGA 硬件设计,包括 FPGA 内部的Nios Ⅱ系统硬件设计和 FPGA 外围电路设计。前者利用 SOPC Builder将Nios Ⅱ处理器、指纹读取接口 UART、键盘与LCD显示接口、FLASH接口、SDRAM控制器构建成NiosⅡ硬件系统,后者是电源和时钟电路、SDRAM存储器电路、FLASH存储器电路、LCD显示电路、指纹传感器电路、FPGA 配置电路这些纯实物硬件设计,给出了设计方法和电路连接图。 在软件方面,包括下面两个内容: 完成 FPGA 外围器件程序设计,实现对外围器件的操作。 深入的研究了指纹识别算法。对指纹图像识别算法中的指纹图像滤波和匹配算法进行了分析,提出了指纹图像增强改进算法和匹配改进算法,通过试验,改进后的指纹图像滤波算法取得了较好的指纹图像增强效果。改进后的匹配算法速度较快,误识率较低。最后研究了指纹识别算法如何在FPGA中的Nios Ⅱ系统的实现。
上传时间: 2013-06-12
上传用户:yx007699
·详细说明:用DSP实现的一个简单的语音识别系统,只要实现单个词的识别即可,采样率8k,帧长30ms,帧移10ms,系统采样后分帧--端点检测,将检测到的原始语音信号保存下来,基本上一个字在30帧左右,然后提取每帧的LPC参数--将LPC参数转换为LPC倒谱系数,然后利用DTW方法和模板比较.
上传时间: 2013-07-01
上传用户:
·详细说明: 这是一个完整的指纹识别程序,它包括了直方图均衡,Gabor滤波图像增强,方向图过滤,纹理细化,特征提取及特征匹配。其中,特征匹配包含了3种匹配方法,另外还附有PPT,非常值得研究。
上传时间: 2013-06-27
上传用户:66666
局部保持映射(Locality Preserving Projection,LPP)算法是一种有效的特征提取方法。提出了利用巴氏距离和LPP相合算法对特征进行提取。当特征维数过高时,首先对样本用LPP进行特征提取和降维处理,然后采用巴氏距离特征的迭代算法,得到最小错误率上界。在ORL上实验,实验结果表明了提出算法在人脸识别中的有效性。
上传时间: 2014-01-25
上传用户:shus521
飞机特征点图像的识别是航空试飞领域中计算机视觉研究的重要课题,在基于图像的视频安全监控、自动识别与智能人机交互方面有着重要的研究价值。其检测算法经过长时间的发展,已经取得了显著的成绩。本文中对Paul Viola提出的基于积分图像和AdaBoost的检测方法进行了深入研究、改进,并针对实际问题成功应用到飞机特征点图像的快速检测中。
上传时间: 2013-11-04
上传用户:日光微澜
在介绍运动检测以及光流的基本概念的基础上引出基于光流方程的两种常用的图像分析方法--梯度法、块匹配法;通过对光流法在红外图像序列的运动目标检测、活动轮廓模型以及医学图像处理方面的应用来阐述这两种光流法的优缺点进行分析从而得出光流法在运动图像识别领域具有较大的优势,最后对光流法在未来其他领域的应用提出展望。
上传时间: 2013-10-31
上传用户:jrsoft