针对物体在不同色温光源照射下呈现偏色的现象,用FPGA实现对Bayer CCD数字相机的自动白平衡处理。根据CFA(Color Filter Array)的分布特点,利用双端口RAM(DPRAM),实现了颜色插值与色彩空间转换。在FPGA上设计了自动白平衡的三大电路模块:色温估计、增益计算和色温校正,并连接形成一个负反馈回路,然后结合EDA设计的特点,改进了增益计算的过程,有效地抑制了色彩振荡现象。
上传时间: 2013-10-22
上传用户:英雄
随着HDL Hardware Description Language 硬件描述语言语言综合工具及其它相关工具的推广使广大设计工程师从以往烦琐的画原理图连线等工作解脱开来能够将工作重心转移到功能实现上极大地提高了工作效率任何事务都是一分为二的有利就有弊我们发现现在越来越多的工程师不关心自己的电路实现形式以为我只要将功能描述正确其它事情交给工具就行了在这种思想影响下工程师在用HDL语言描述电路时脑袋里没有任何电路概念或者非常模糊也不清楚自己写的代码综合出来之后是什么样子映射到芯片中又会是什么样子有没有充分利用到FPGA的一些特殊资源遇到问题立刻想到的是换速度更快容量更大的FPGA器件导致物料成本上升更为要命的是由于不了解器件结构更不了解与器件结构紧密相关的设计技巧过分依赖综合等工具工具不行自己也就束手无策导致问题迟迟不能解决从而严重影响开发周期导致开发成本急剧上升 目前我们的设计规模越来越庞大动辄上百万门几百万门的电路屡见不鲜同时我们所采用的器件工艺越来越先进已经步入深亚微米时代而在对待深亚微米的器件上我们的设计方法将不可避免地发生变化要更多地关注以前很少关注的线延时我相信ASIC设计以后也会如此此时如果我们不在设计方法设计技巧上有所提高是无法面对这些庞大的基于深亚微米技术的电路设计而且现在的竞争越来越激励从节约公司成本角度出 也要求我们尽可能在比较小的器件里完成比较多的功能 本文从澄清一些错误认识开始从FPGA器件结构出发以速度路径延时大小和面积资源占用率为主题描述在FPGA设计过程中应当注意的问题和可以采用的设计技巧本文对读者的技能基本要求是熟悉数字电路基本知识如加法器计数器RAM等熟悉基本的同步电路设计方法熟悉HDL语言对FPGA的结构有所了解对FPGA设计流程比较了解
上传时间: 2015-01-02
上传用户:refent
采用Xlinx公司的Virtex5系列FPGA设计了一个用于多种高速串行协议的数据交换模块,并解决了该模块实现中的关键问题.该交换模块实现4X模式RapidIO协议与4X模式PCI Express协议之间的数据交换,以及自定义光纤协议与4X模式PCI Express协议之间的数据交换,实现了单字读写以及DMA操作,并提供高速稳定的传输带宽.
上传时间: 2013-10-19
上传用户:angle
摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。
上传时间: 2013-10-13
上传用户:lml1234lml
摘 要:介绍了FPGA最新一代器件Virtex25上的高速串行收发器RocketIO。基于ML505开发平台构建了一个高速串行数据传输系统,重点说明了该系统采用RocketIO实现1. 25Gbp s高速串行传输的设计方案。实现并验证了采用FPGA完成千兆串行传输的功能目标,为后续采用FPGA实现各种高速协议奠定了良好的基础。关键词: FPGA;高速串行传输; RocketIO; GTP 在数字系统互连设计中,高速串行I/O技术取代传统的并行I/O技术成为当前发展的趋势。与传统并行I/O技术相比,串行方案提供了更大的带宽、更远的距离、更低的成本和更高的扩展能力,克服了并行I/O设计存在的缺陷。在实际设计应用中,采用现场可编程门阵列( FPGA)实现高速串行接口是一种性价比较高的技术途径。
上传时间: 2013-10-22
上传用户:semi1981
通用阵列逻辑GAL实现基本门电路的设计 一、实验目的 1.了解GAL22V10的结构及其应用; 2.掌握GAL器件的设计原则和一般格式; 3.学会使用VHDL语言进行可编程逻辑器件的逻辑设计; 4.掌握通用阵列逻辑GAL的编程、下载、验证功能的全部过程。 二、实验原理 1. 通用阵列逻辑GAL22V10 通用阵列逻辑GAL是由可编程的与阵列、固定(不可编程)的或阵列和输出逻辑宏单元(OLMC)三部分构成。GAL芯片必须借助GAL的开发软件和硬件,对其编程写入后,才能使GAL芯片具有预期的逻辑功能。GAL22V10有10个I/O口、12个输入口、10个寄存器单元,最高频率为超过100MHz。 ispGAL22V10器件就是把流行的GAL22V10与ISP技术结合起来,在功能和结构上与GAL22V10完全相同,并沿用了GAL22V10器件的标准28脚PLCC封装。ispGAl22V10的传输时延低于7.5ns,系统速度高达100MHz以上,因而非常适用于高速图形处理和高速总线管理。由于它每个输出单元平均能够容纳12个乘积项,最多的单元可达16个乘积项,因而更为适用大型状态机、状态控制及数据处理、通讯工程、测量仪器等领域。ispGAL22V10的功能框图及引脚图分别见图1-1和1-2所示。 另外,采用ispGAL22V10来实现诸如地址译码器之类的基本逻辑功能是非常容易的。为实现在系统编程,每片ispGAL22V10需要有四个在系统编程引脚,它们是串行数据输入(SDI),方式选择(MODE)、串行输出(SDO)和串行时钟(SCLK)。这四个ISP控制信号巧妙地利用28脚PLCC封装GAL22V10的四个空脚,从而使得两种器件的引脚相互兼容。在系统编程电源为+5V,无需外接编程高压。每片ispGAL22V10可以保证一万次在系统编程。 ispGAL22V10的内部结构图如图1-3所示。 2.编译、下载源文件 用VHDL语言编写的源程序,是不能直接对芯片编程下载的,必须经过计算机软件对其进行编译,综合等最终形成PLD器件的熔断丝文件(通常叫做JEDEC文件,简称为JED文件)。通过相应的软件及编程电缆再将JED数据文件写入到GAL芯片,这样GAL芯片就具有用户所需要的逻辑功能。 3.工具软件ispLEVER简介 ispLEVER 是Lattice 公司新推出的一套EDA软件。设计输入可采用原理图、硬件描述语言、混合输入三种方式。能对所设计的数字电子系统进行功能仿真和时序仿真。编译器是此软件的核心,能进行逻辑优化,将逻辑映射到器件中去,自动完成布局与布线并生成编程所需要的熔丝图文件。软件中的Constraints Editor工具允许经由一个图形用户接口选择I/O设置和引脚分配。软件包含Synolicity公司的“Synplify”综合工具和Lattice的ispVM器件编程工具,ispLEVER软件提供给开发者一个简单而有力的工具。
上传时间: 2013-11-17
上传用户:看到了没有
第一部分 信号完整性知识基础.................................................................................5第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1063.2 高速设计的问题.......................................................................................2093.3 SPECCTRAQuest SI Expert 的组件.......................................................2103.3.1 SPECCTRAQuest Model Integrity .................................................2103.3.2 SPECCTRAQuest Floorplanner/Editor .........................................2153.3.3 Constraint Manager .......................................................................2163.3.4 SigXplorer Expert Topology Development Environment .......2233.3.5 SigNoise 仿真子系统......................................................................2253.3.6 EMControl .........................................................................................2303.3.7 SPECCTRA Expert 自动布线器.......................................................2303.4 高速设计的大致流程...............................................................................2303.4.1 拓扑结构的探索...............................................................................2313.4.2 空间解决方案的探索.......................................................................2313.4.3 使用拓扑模板驱动设计...................................................................2313.4.4 时序驱动布局...................................................................................2323.4.5 以约束条件驱动设计.......................................................................2323.4.6 设计后分析.......................................................................................233第四章 SPECCTRAQUEST SIGNAL EXPLORER 的进阶运用..........................................2344.1 SPECCTRAQuest Signal Explorer 的功能包括:................................2344.2 图形化的拓扑结构探索...........................................................................2344.3 全面的信号完整性(Signal Integrity)分析.......................................2344.4 完全兼容 IBIS 模型...............................................................................2344.5 PCB 设计前和设计的拓扑结构提取.......................................................2354.6 仿真设置顾问...........................................................................................2354.7 改变设计的管理.......................................................................................2354.8 关键技术特点...........................................................................................2364.8.1 拓扑结构探索...................................................................................2364.8.2 SigWave 波形显示器........................................................................2364.8.3 集成化的在线分析(Integration and In-process Analysis) .236第五章 部分特殊的运用...............................................................................2375.1 Script 指令的使用..................................................................................2375.2 差分信号的仿真.......................................................................................2435.3 眼图模式的使用.......................................................................................249第四部分:HYPERLYNX 仿真工具使用指南............................................................251第一章 使用LINESIM 进行前仿真.......................................................................2511.1 用LineSim 进行仿真工作的基本方法...................................................2511.2 处理信号完整性原理图的具体问题.......................................................2591.3 在LineSim 中如何对传输线进行设置...................................................2601.4 在LineSim 中模拟IC 元件.....................................................................2631.5 在LineSim 中进行串扰仿真...................................................................268第二章 使用BOARDSIM 进行后仿真......................................................................2732.1 用BOARDSIM 进行后仿真工作的基本方法...................................................2732.2 BoardSim 的进一步介绍..........................................................................2922.3 BoardSim 中的串扰仿真..........................................................................309
上传时间: 2013-11-07
上传用户:aa7821634
PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡
上传时间: 2015-01-02
上传用户:15070202241
指令集仿真器(ISS)是现代DSP产品调试的有力工具,但ISS的开发会耗费很大的人力物力,同时其正确性亦无法得到很好的保证。ISS自动生成技术是解决以上问题的有效途径,论文描述了基于英飞凌公司Tricore的ISS自动生成的设计与实现,并对现有的自动生成技术做了一些优化,使自动产生的ISS具有更好的性能。
上传时间: 2015-01-02
上传用户:DXM35
定时程序控制器用于气缸、电磁阀等各种类型的设备控制,接线简单,用表格设置的方法代替编程方法,适合不熟悉编程的人员使用。除了程序自动控制,有时候需要调试设备、检修设备的时候,需要手动控制,本文介绍如何增加手动开关的原理接线方法。
上传时间: 2013-11-22
上传用户:xitai