减小电磁干扰的印刷电路板设计原则 内 容 摘要……1 1 背景…1 1.1 射频源.1 1.2 表面贴装芯片和通孔元器件.1 1.3 静态引脚活动引脚和输入.1 1.4 基本回路……..2 1.4.1 回路和偶极子的对称性3 1.5 差模和共模…..3 2 电路板布局…4 2.1 电源和地…….4 2.1.1 感抗……4 2.1.2 两层板和四层板4 2.1.3 单层板和二层板设计中的微处理器地.4 2.1.4 信号返回地……5 2.1.5 模拟数字和高压…….5 2.1.6 模拟电源引脚和模拟参考电压.5 2.1.7 四层板中电源平面因该怎么做和不应该怎么做…….5 2.2 两层板中的电源分配.6 2.2.1 单点和多点分配.6 2.2.2 星型分配6 2.2.3 格栅化地.7 2.2.4 旁路和铁氧体磁珠……9 2.2.5 使噪声靠近磁珠……..10 2.3 电路板分区…11 2.4 信号线……...12 2.4.1 容性和感性串扰……...12 2.4.2 天线因素和长度规则...12 2.4.3 串联终端传输线…..13 2.4.4 输入阻抗匹配...13 2.5 电缆和接插件……...13 2.5.1 差模和共模噪声……...14 2.5.2 串扰模型……..14 2.5.3 返回线路数目..14 2.5.4 对板外信号I/O的建议14 2.5.5 隔离噪声和静电放电ESD .14 2.6 其他布局问题……...14 2.6.1 汽车和用户应用带键盘和显示器的前端面板印刷电路板...15 2.6.2 易感性布局…...15 3 屏蔽..16 3.1 工作原理…...16 3.2 屏蔽接地…...16 3.3 电缆和屏蔽旁路………………..16 4 总结…………………………………………17 5 参考文献………………………17
上传时间: 2013-10-22
上传用户:a6697238
第一章光纤连接在介绍光纤光缆性能检测方法之前,先讲述光纤连接特别是光纤端面处理和熔接技术,作为必须掌握的基本技能训练。实际的光通信系统由光发射器、光传输通道(光纤)、光接收器三个主要部分组成,光纤光缆的传输性能检测系统也同样如此。系统各部分之间的衔接就是光耦合或光纤连接问题。通信系统和检测系统都要求各部分之间光耦合有高耦合效率、稳定可靠、连接损耗小的连接。而且光耦合和光纤连接技术是光纤通信系统和检测系统中一门非常基本和实用的技术。第一节光耦合一、光纤与光源的耦合在光纤通信系统和光纤传输特性检测系统中使用多种光源,有半导体激光器、气体激光器、液体激光器、发光二极管、宽光谱光源等等。它们大致可以分为两大类,一类是相干光源,如各种激光器;另一类是非相干光源,如发光二极管、宽光谱光源(白炽灯)。光耦合先要解决如何高效率地把光源发射的光注入到传输通道中去的问题。为此,先了解一下光源的特性。
上传时间: 2013-10-30
上传用户:xinshou123456
随着网络技术和虚拟技术的发展,操作系统对资源的管理也由本地化转向网络化、虚拟化。研究了通过网络和虚拟技术,将网络中其他系统的USB 设备资源通过网络转化的渠道直接映射到本地的USB 总线上,实现操作系统的直接管理和应用。
上传时间: 2013-11-01
上传用户:HGH77P99
C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264
标签: my_Include include define 3.141
上传时间: 2014-01-17
上传用户:epson850
数字运算,判断一个数是否接近素数 A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value. Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not. Input Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone. Output For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise. Sample Input 10 111 2 110 10 123 6 1000 8 2314 0 Sample Output yes yes no yes no
上传时间: 2015-05-21
上传用户:daguda
源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).
上传时间: 2013-12-26
上传用户:siguazgb
c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。
上传时间: 2014-01-12
上传用户:变形金刚
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。
上传时间: 2014-11-28
上传用户:宋桃子
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错
上传时间: 2014-01-16
上传用户:hphh
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
标签: represented integers group items
上传时间: 2016-01-17
上传用户:jeffery