虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

耗散

  • 基于多环锁相宽带细步进频率合成器的设计

    为了满足宽频段、细步进频率综合器的工程需求,对基于多环锁相的频率合成器进行了分析和研究。在对比传统单环锁相技术基础上,介绍了采用DDS+PLL多环技术实现宽带细步进频综,输出频段10~13 GHz,频率步进10 kHz,相位噪声达到-92 dBc/Hz@1 kHz,杂散抑制达到-68 dBc,满足实际工程应用需求。

    标签: 锁相 宽带 合成器 步进频率

    上传时间: 2013-10-12

    上传用户:Late_Li

  • MT-003 了解SINAD、ENOB、SNR、THD、THD + N、SFDR,不在噪底中迷失

    用于定量表示ADC动态性能的常用指标有六个,分别是:SINAD(信纳比)、ENOB(有效位 数)、SNR(信噪比)、THD(总谐波失真)、THD + N(总谐波失真加噪声)和SFDR(无杂散动态 范围)

    标签: THD SINAD ENOB SFDR

    上传时间: 2014-01-22

    上传用户:鱼哥哥你好

  • MT-013 评估高速DAC性能

    ADC需要FFT处理器来评估频谱纯度,DAC则不同,利用传统的模拟频谱分析仪就能直接 研究它所产生的模拟输出。DAC评估的挑战在于要产生从单音正弦波到复杂宽带CDMA信 号的各种数字输入。数字正弦波可以利用直接数字频率合成技术来产生,但更复杂的数字 信号则需要利用更精密、更昂贵的字发生器来产生。 评估高速DAC时,最重要的交流性能指标包括:建立时间、毛刺脉冲面积、失真、无杂散 动态范围(SFDR)和信噪比(SNR)。本文首先讨论时域指标,然后讨论频域指标。

    标签: 013 DAC MT 性能

    上传时间: 2013-10-27

    上传用户:Vici

  • 3GHz射频信号源模块GR6710

    产品概要: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,具有CPCI、PXI、SPI、RS232、RS485和自定义IO接口。 产品描述: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,还可以通过IQ选件实现其它任意调制输出。GR6710既可程控发生点频信号和扫频信号,也支持内部调制和外部调制。GR6710可安装于3U/6U背板上工作,也可以独立供电工作,使用灵活。该模块可用于通信测试、校准信号源。 技术指标 频率特性 频率范围:9kHz~3GHz,500KHz以下指标不保证 频率分辨率:3Hz,1Hz(载频<10MHz时) 频率稳定度:晶振保证 电平特性 电平范围:-110dBm~+10dBm 电平分辨率:0.5dB 电平准确度:≤±2.5dB@POWER<-90dBm,≤±1.5dB@POWER>-90dBm 输出关断功能 频谱纯度 谐波:9KHz~200MHz≥20dBc,200MHz~3GHz≥30dBc 非谐波:≤80dBc典型值(偏移10kHz,载频<1GHz),≥68dBc(偏移10kHz,其它载频), 锁相环小数分频杂散≥64dBc(偏移10kHz) SSB相噪: ≤-98dBc/Hz 偏移20kHz(500MHz) ≤-102dBc/Hz 偏移20kHz(1GHz) ≤-90dBc/Hz 偏移20kHz(>1GHz) 调制输出:调幅AM、调频FM、脉冲CW,其它调制输出可以通过IQ选件实现 调制源:内、外 参考时钟输入和输出:10MHz,14dBm 控制接口:CPCI、PXI、SPI、RS232、RS485、自定义GPIO 射频和时钟连接器:SMA-K 电源接口:背板供电、独立供电 可选 电源及其功耗:+5V DC、±12V DC(纹波≤2%输出电压),≤38W 结构尺寸:3U高度4槽宽度(100mm×160mm×82mm,不含连接器部分) 工作环境:商业级温度和工业级温度 可选,振动、冲击、可靠性、MTBF 测控软件功能:射频信号发生、调制信号输出、跳频/扫频信号发生、支持WindowsXP系统 成功案例: 通信综测仪器内部的信号源模块 无线电监测设备内部的信号校准模块 无线电通信测试仪器的调制信号发生

    标签: 3GHz 6710 GR 射频信号源

    上传时间: 2013-11-13

    上传用户:s363994250

  • 数字预失真(DPD)算法研发工具和验证方案

    在无线通信系统全面进入3G并开始迈向 4G的过程中,使用数字预失真技术(Digital Pre-distortion,以下简称DPD)对发射机的功放进行线性化是一门关键技术。功率放大器是通信系统中影响系统性能和覆盖范围的关键部件,非线性是功放的固有特性。非线性会引起频谱增长(spectral re-growth),从而造成邻道干扰,使带外杂散达不到协议标准规定的要求。非线性也会造成带内失真,带来系统误码率增大的问题。

    标签: DPD 数字预失真 算法 验证方案

    上传时间: 2013-10-19

    上传用户:yy_cn

  • 精密运算放大器自动校零

    运算放大器集成电路,与其它通用集成电路一样,向低电压供电方向发展,普遍使用3V供电,目的是减少功耗和延长电池寿命。这样一来,运算放大器集成电路需要有更高的元件精度和降低误差容限。运算放大器一般位于电路系统的前端,对于时间和温度稳定性的要求是可以理解的,同时要改进电路结构和修调技术。当前,运算放大器是在封装后用激光修调和斩波器稳定技术,这些办法已沿用多年并且行之有效,它们仍有改进的潜力,同时近年开发成功的数字校正技术,由于获得成功和取得实效,几家运算放大器集成电路生产商最近公开了它们的数字修调技术,本文简介如下。

    标签: 精密 运算放大器 自动校零

    上传时间: 2013-11-17

    上传用户:妄想演绎师

  • DAC34H84 HD2 性能优化与PCB布局建议

    DAC34H84 是一款由德州仪器(TI)推出的四通道、16 比特、采样1.25GSPS、功耗1.4W 高性能的数模转换器。支持625MSPS 的数据率,可用于宽带与多通道系统的基站收发信机。由于无线通信技术的高速发展与各设备商基站射频拉远单元(RRU/RRH)多种制式平台化的要求,目前收发信机单板支持的发射信号频谱越来越宽,而中频频率一般没有相应提高,所以中频发射DAC 发出中频(IF)信号的二次谐波(HD2)或中频与采样频率Fs 混叠产生的信号(Fs-2*IF)离主信号也越来越近,因此这些非线性杂散越来越难被外部模拟滤波器滤除。这些子进行pcb设计布局,能取得较好的信号完整性效果,可以在pcb打样后,更放心。这些杂散信号会降低发射机的SFDR 性能,优化DAC 输出的二次谐波性能也就变得越来越重要。

    标签: DAC 34H H84 HD2

    上传时间: 2013-10-23

    上传用户:lalalal

  • 充分利用IP以及拓扑规划提高PCB设计效率

    本文探讨的重点是PCB设计人员利用IP,并进一步采用拓扑规划和布线工具来支持IP,快速完成整个PCB设计。从图1可以看出,设计工程师的职责是通过布局少量必要元件、并在这些元件之间规划关键互连路径来获取IP。一旦获取到了IP,就可将这些IP信息提供给PCB设计人员,由他们完成剩余的设计。 图1:设计工程师获取IP,PCB设计人员进一步采用拓扑规划和布线工具支持IP,快速完成整个PCB设计。现在无需再通过设计工程师和PCB设计人员之间的交互和反复过程来获取正确的设计意图,设计工程师已经获取这些信息,并且结果相当精确,这对PCB设计人员来说帮助很大。在很多设计中,设计工程师和PCB设计人员要进行交互式布局和布线,这会消耗双方许多宝贵的时间。从以往的经历来看交互操作是必要的,但很耗时间,且效率低下。设计工程师提供的最初规划可能只是一个手工绘图,没有适当比例的元件、总线宽度或引脚输出提示。随着PCB设计人员参与到设计中来,虽然采用拓扑规划技术的工程师可以获取某些元件的布局和互连,不过,这个设计可能还需要布局其它元件、获取其它IO及总线结构和所有互连才能完成。PCB设计人员需要采用拓扑规划,并与经过布局的和尚未布局的元件进行交互,这样做可以形成最佳的布局和交互规划,从而提高PCB设计效率。随着关键区域和高密区域布局完成及拓扑规划被获取,布局可能先于最终拓扑规划完成。因此,一些拓扑路径可能必须与现有布局一起工作。虽然它们的优先级较低,但仍需要进行连接。因而一部分规划围绕布局后的元件产生了。此外,这一级规划可能需要更多细节来为其它信号提供必要的优先级。

    标签: PCB 利用IP 拓扑规划

    上传时间: 2013-10-12

    上传用户:sjyy1001

  • pcb layout design(台湾硬件工程师15年经验

    PCB LAYOUT 術語解釋(TERMS)1. COMPONENT SIDE(零件面、正面)︰大多數零件放置之面。2. SOLDER SIDE(焊錫面、反面)。3. SOLDER MASK(止焊膜面)︰通常指Solder Mask Open 之意。4. TOP PAD︰在零件面上所設計之零件腳PAD,不管是否鑽孔、電鍍。5. BOTTOM PAD:在銲錫面上所設計之零件腳PAD,不管是否鑽孔、電鍍。6. POSITIVE LAYER:單、雙層板之各層線路;多層板之上、下兩層線路及內層走線皆屬之。7. NEGATIVE LAYER:通常指多層板之電源層。8. INNER PAD:多層板之POSITIVE LAYER 內層PAD。9. ANTI-PAD:多層板之NEGATIVE LAYER 上所使用之絕緣範圍,不與零件腳相接。10. THERMAL PAD:多層板內NEGATIVE LAYER 上必須零件腳時所使用之PAD,一般稱為散熱孔或導通孔。11. PAD (銲墊):除了SMD PAD 外,其他PAD 之TOP PAD、BOTTOM PAD 及INNER PAD 之形狀大小皆應相同。12. Moat : 不同信號的 Power& GND plane 之間的分隔線13. Grid : 佈線時的走線格點2. Test Point : ATE 測試點供工廠ICT 測試治具使用ICT 測試點 LAYOUT 注意事項:PCB 的每條TRACE 都要有一個作為測試用之TEST PAD(測試點),其原則如下:1. 一般測試點大小均為30-35mil,元件分布較密時,測試點最小可至30mil.測試點與元件PAD 的距離最小為40mil。2. 測試點與測試點間的間距最小為50-75mil,一般使用75mil。密度高時可使用50mil,3. 測試點必須均勻分佈於PCB 上,避免測試時造成板面受力不均。4. 多層板必須透過貫穿孔(VIA)將測試點留於錫爐著錫面上(Solder Side)。5. 測試點必需放至於Bottom Layer6. 輸出test point report(.asc 檔案powerpcb v3.5)供廠商分析可測率7. 測試點設置處:Setup􀃆pads􀃆stacks

    标签: layout design pcb 硬件工程师

    上传时间: 2013-10-22

    上传用户:pei5

  • 磁芯电感器的谐波失真分析

    磁芯电感器的谐波失真分析 摘  要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。  一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。  图中  ZD   —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB,       Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP  —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C  ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz,  使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁

    标签: 磁芯 电感器 谐波失真

    上传时间: 2014-12-24

    上传用户:7891