实现sar的静止目标的回波模型,并用rda算法实现压缩和成像
上传时间: 2017-09-25
上传用户:黄华强
基于FPGA的机器人视觉系统模块的设计 关键字: 机器人 视觉系统 集成电路 FPGA 一、概述 视觉技术是近几十年来发展的一门新兴技术。机器视觉可以代替人类的视觉从事检验、目标跟踪、机器人导向等方面的工作,特别是在那些需要重复、迅速的从图象中获取精确信息的场合。尽管在目前硬件和软件技术条件下,机器视觉功能还处于初级水平,但其潜在的应用价值引起了世界各国的高度重视,发达国家如美国、日本、德国、法国等都投入了大量的人力物力进行研究,近年来已经在机器视觉的某些方面获得了突破性的进展,机器视觉在车辆安全技术、自动化技术等应用中也越来越显示出其重要价值。本文根据最新的CMOS图像采集芯片设计了一种通用的视觉系统模块,经过编制不同的图像处理、模式识别算法程序本模块可以应用到足球机器人,无人车辆等各种场合。
标签: FPGA的机器人视觉系统
上传时间: 2015-04-25
上传用户:justgo123
采用meanshift跟踪算法matlab实现对目标的稳定跟踪
上传时间: 2015-04-30
上传用户:tfs1992
遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。 遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。 遗传算法有三个进化算子:选择(复制)、交叉和变异。 SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。 交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。 变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。 遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。 由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。 下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。
标签: 遗传算法
上传时间: 2015-06-04
上传用户:芃溱溱123
我写的一份轨迹跟踪的算法,识别目标的轨迹
标签: 轨迹跟踪
上传时间: 2015-07-15
上传用户:asuka
在实际应用中,利用遗传算法处理多目标优化问题,initPop=initializega(10,[0 9],'fitness'); [x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 0],'maxGenTerm',25,'normGeomSelect',[0.08],'arithXover',[2 0],'nonUnifMutation',[2 25 3]) MATLAB代码
标签: 代码
上传时间: 2015-12-24
上传用户:zzz123456bd
微分进化算法的matlab代码,微分进化算法是一种智能进化算法,可对多目标进行优化。
上传时间: 2016-01-14
上传用户:hmq316
% 生成训练样本集 clear all; clc; P=[110 0.807 240 0.2 15 1 18 2 1.5; 110 2.865 240 0.1 15 2 12 1 2; 110 2.59 240 0.1 12 4 24 1 1.5; 220 0.6 240 0.3 12 3 18 2 1; 220 3 240 0.3 25 3 21 1 1.5; 110 1.562 240 0.3 15 3 18 1 1.5; 110 0.547 240 0.3 15 1 9 2 1.5]; 0 1.318 300 0.1 15 2 18 1 2]; T=[54248 162787 168380 314797; 28614 63958 69637 82898; 86002 402710 644415 328084; 230802 445102 362823 335913; 60257 127892 76753 73541; 34615 93532 80762 110049; 56783 172907 164548 144040]; @907 117437 120368 130179]; m=max(max(P)); n=max(max(T)); P=P'/m; T=T'/n; %-------------------------------------------------------------------------% pr(1:9,1)=0; %输入矢量的取值范围矩阵 pr(1:9,2)=1; bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm'); %建立BP神经网络, 12个隐层神经元,4个输出神经元 %tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数 %tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数 %trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数 %learn属性 'learngdm' 附加动量因子的梯度下降学习函数 net.trainParam.epochs=1000;%允许最大训练步数2000步 net.trainParam.goal=0.001; %训练目标最小误差0.001 net.trainParam.show=10; %每间隔100步显示一次训练结果 net.trainParam.lr=0.05; %学习速率0.05 bpnet=train(bpnet,P,T); %------------------------------------------------------------------------- p=[110 1.318 300 0.1 15 2 18 1 2]; p=p'/m; r=sim(bpnet,p); R=r'*n; display(R);
上传时间: 2016-05-28
上传用户:shanqiu
针对高速图像目标实时识别和跟踪任务,需要利用系统中有限的硬件资源实现高速、准确的二值图像 连通域标记,提出了一种适合FPGA实现的二值图像连通域标记快速算法。算法以快捷、有效的方式识别、并 记录区域间复杂的连通关系。与传统的二值图像标记算法相比,该算法具有运算简单性、规则性和可扩展性的 特点。
标签: FPGA 二值图像 标记 快速算法基于FPGA的二值图像连通域标记快速算法实现
上传时间: 2016-11-19
上传用户:nathanlgy
实现了将视频中所有经过车辆的读取并存储,能够实现对各个车道的单独计数及显示。
上传时间: 2016-11-27
上传用户:akic