PSHLY-B回路电阻测试仪介绍
上传时间: 2013-11-05
上传用户:木子叶1
针对目前使用的RS232接口数字化B超键盘存在PC主机启动时不能设置BIOS,提出一种PS2键盘的设计方法。基于W78E052D单片机,采用8通道串行A/D转换器设计了8个TGC电位器信息采集电路,电位器位置信息以键盘扫描码序列形式发送,正交编码器信号通过XC9536XL转换为单片机可接收的中断信号,软件接收到中断信息后等效处理成按键。结果表明,在满足开机可设置BIOS同时,又可实现超声特有功能,不需要专门设计驱动程序,接口简单,成本低。 Abstract: Aiming at the problem of the digital ultrasonic diagnostic imaging system keyboard with RS232 interface currently used couldn?蒺t set the BIOS when the PC boot, this paper proposed a design method of PS2 keyboards. Based on W78E052D microcontroller,designed eight TGC potentiometers information acquisition circuit with 8-channel serial A/D converter, potentiometer position information sent out with keyboard scan code sequentially.The control circuit based on XC9536 CPLD is used for converting the mechanical actions of the encoders into the signals that can be identified by the MCU, software received interrupt information and equivalently treatmented as key. The results show that the BIOS can be set to meet the boot, ultrasound specific functionality can be achieved at the same time, it does not require specially designed driver,the interface is simple and low cost.
上传时间: 2013-10-10
上传用户:asdfasdfd
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
单片机应用技术选编(9) 目录 第一章 专题论述1.1 集成电路进入片上系统时代(2)1.2 系统集成芯片综述(10)1.3 Java嵌入技术综述(18)1.4 Java的线程机制(23)1.5 嵌入式系统中的JTAG接口编程技术(29)1.6 EPAC器件技术概述及应用(37)1.7 VHDL设计中电路简化问题的探讨(42)1.8 8031芯片主要模块的VHDL描述与仿真(48)1.9 ISP技术在数字系统设计中的应用(59)1.10 单片机单总线技术(64)1.11 智能信息载体iButton及其应用(70)1.12 基于单片机的高新技术产品加密方法探讨(76)1.13 新一代私钥加密标准AES进展与评述(80)1.14 基于单片机的实时3DES加密算法的实现(86)1.15 ATA接口技术(90)1.16 基于IDE硬盘的高速数据存储器研究(98)1.17 模拟比较器的应用(102) 第二章 综合应用技术2.1 闪速存储器硬件接口和程序设计中的关键技术(126)2.2 51单片机节电模式的应用(131)2.3 分布式实时应用的两个重要问题(137)2.4 分布式运算单元的原理及其实现方法(141)2.5 用PLD器件设计逻辑电路时的竞争冒险现象(147)2.6 IRIG?B格式时间码解码接口卡电路设计(150)2.7 一种基于单片机时频信号处理的实用方法(155)2.8 射频接收系统晶体振荡电路的设计与分析(161)2.9 揭开ΣΔ ADC的神秘面纱(166)2.10 过采样高阶A/D转换器的硬件实现(172)2.11 A/D转换的计算与编程(176)2.12 一种提高单片机内嵌式A/D分辨力的方法(179)2.13 单片微型计算机多字节浮点快速相对移位法开平方运算的实现(182)2.14 单片微型计算机多字节浮点除法快速扫描运算的实现(186)2.15 DSP芯片与触摸屏的接口控制(188)第三章 操作系统与软件技术3.1 嵌入式系统中的实时操作系统(192)3.2 嵌入式系统的开发利器——Windows CE操作系统(197)3.3 介绍一种实时操作系统DSP/BIOS(203)3.4 实时操作系统用于嵌入式应用系统的设计(212)3.5 实时Linux操作系统初探(217)3.6 Linux网络设备驱动程序分析与设计(223)3.7 在51系列单片机上实现非抢先式消息驱动机制的RTOS(229)3.8 用结构化程序设计思想指导汇编语言开发(236)3.9 单片机高级语言C51与汇编语言ASM51的通用接口(240)3.10 ASM51无参数化调用C51函数的实现(245)3.11 TMS320C3X的汇编语言和C语言及混合编程技术(249)3.12 TMS320C6000嵌入式系统优化编程的研究(254)3.13 TMS320C54X软件模拟实现UART技术(260)3.14 W78E516及其在系统编程的实现(265)3.15 键盘键入信号软件处理方法探讨(272)3.16 单片机系统中数字滤波的算法(276)第四章 网络、通信与数据传送 4.1 实时单片机通信网络中的内存管理(284)4.2 CRC16编码在单片机数据传输系统中的实现(288)4.3 在VC++中用ActiveX控件实现与单片机的串行通信(293)4.4 利用Windows API函数构造C++类实现串行通信(298)4.5 用Win32 API实现PC机与多单片机的串行通信(304)4.6 GPS接收机与PC机串行通信技术的开发与应用(311)4.7 TCP/IP协议问题透析(316)4.8 单片机的MODEM通信(328)4.9 无线串行接口电路设计(335)4.10 通用无线数据传输电路设计(340)4.11 FX909在无线高速MODEM中的应用(343)4.12 蓝牙——短距离无线连接新技术(348)4.13 蓝牙技术——一种短距离的无线连接技术(351)4.14 蓝牙芯片及其应用(357)4.15 BlueCoreTM01蓝牙芯片的特性与应用(361)4.16 内嵌微控制器的无线数据发射器的特性及应用(365)第五章 新器件及其应用技术5.1 一种全新结构的微控制器——Triscend E5(372)5.2 PSD8XXF的在系统编程技术(376)5.3 PSD813F1及其接口编程技术(382)5.4 一种优越的可编程逻辑器件——ISP器件(387)5.5 ISPPLD原理及其设计应用(393)5.6 ispPAC10在系统可编程模拟电路及其应用(397)5.7 在系统可编程器件ispPAC80及其应用(404)5.8 采用ispLSI1016设计高精度光电码盘计数器(408)5.9 基于ADμC812的一种仪表开发平台(413)5.10 基于P87LPC764的ΣΔ ADC应用设计方法(418)5.11 MP3解码芯片组及其应用(431)5.12 射频IC卡E5550原理及应用(434)5.13 HD7279A键盘显示驱动芯片及应用(439)5.14 基于SPI接口的ISD4104系列语音录放芯片及其应用(444)5.15 解决DS1820通信误码问题的方法(450)5.16 数字电位器在测量放大器中的应用(455)第六章 总线及其应用技术6.1 按平台模式设计的虚拟I2C总线软件包VIIC(462)6.2 虚拟I2C总线软件包的开发及其应用(470)6.3 RS485总线的理论与实践(479)6.4 RS232至RS485/RS422接口的智能转换器(484)6.5 实用隔离型RS485通信接口的设计(489)6.6 几种RS485接口收发方向转换方法(495)6.7 LonWorks总线技术及发展(498)6.8 LonWorks网络监控的简单实现(505)6.9 现场总线CANbus与RS485之间透明转换的实现(509)6.10 居室自动化系统中的X10和CE总线(513)6.11 通用串行总线USB(519)6.12 USB2.0技术概述(524)6.13 带通用串行总线USB接口的单片机EZUSB(530)6.14 嵌入式处理器中的慢总线技术应用(536)6.15 SPI串行总线在单片机8031应用系统中的设计与实现(540)第七章 可靠性及安全性技术7.1 软件可靠性及其评估(546)7.2 网络通信中的基本安全技术(554)7.3 数字语音混沌保密通信系统及硬件实现(560)7.4 伪随机序列及PLD实现在程序和系统加密中的应用(565)7.5 增强单片机系统可靠性的若干措施(569)7.6 FPGA中的空间辐射效应及加固技术(573)7.7 一种双机备份系统的软实现(577)7.8 计算机系统容错技术的应用(581)7.9 容错系统中的自校验技术及实现方法(585)7.10 基于MAX110的容错数据采集系统的设计(589)7.11 冗余式时钟源电路(593)7.12 微机控制系统的抗干扰技术应用(599)7.13 单片开关电源瞬态干扰及音频噪声抑制技术(604)7.14 单片机应用系统程序运行出轨问题研究(608)7.15 分布式系统故障卷回恢复技术研究与实践(613)第八章 典型应用实例8.1 基于单片机系统采用DMA块传输方式实现高速数据采集(620)8.2 GPS数据采集卡的设计(624)8.3 一种新型非接触式IC卡识别系统研究(629)8.4 自适应调整增益的单片机数据采集系统(633)8.5 利用光纤发射/接收器对实现远距离高速数据采集(639)8.6 一种频率编码键盘的设计与实现(645)8.7 高准确度时钟程序算法(649)8.8 旋转编码器的抗抖动计数电路(652)8.9 利用X9241实现高分辨率数控电位器(656)8.10 基于AD2S80A的高精度位置检测系统及其在机器人控制中的应用(661)第九章 文章摘要一、专题论述(670)1.1 微控制器的发展趋势(670)1.2 系统微集成技术的发展(670)1.3 多芯片组件技术及其应用(671)1.4 MCS51和80C51系列单片机(671)1.5 PSD813器件在单片机系统中的应用(671)1.6 主辅单片机系统的设计及应用(671)1.7 一种双单片机结构的微机控制器(671)1.8 用PC机直接开发单片机系统(672)1.9 单片机系统大容量存储器扩展技术(672)1.10 高性能微处理器性能模型设计(672)1.11 闪速存储器的选择与接口(672)1.12 串行存储器接口的比较及选择(672)1.13 移位寄存器分析方法的研究(673)1.14 GPS的时频系统(673)1.15 一种基于C语言的虚拟仪器系统实现方法(673)1.16 智能家庭网络研究综述(673)1.17 用C51实现电力部多功能电能表通信规约(674)1.18 测控系统中采样数据的预处理(674)1.19 数据采集系统动态特性的总体评价(674)1.20 一个高速准确的手写数字识别系统(674)1.21 日本理光实时时钟集成电路发展历史及现状(675)1.22 单片开关电源的发展及其应用(675)二、综合应用技术(676)2.1 MCS51系列单片机在SDH系统中的应用(676)2.2 公共闪存接口在Flash Memory程序设计中的应用(676)2.3 应用IA MMXTM技术的离散余弦变换(676)2.4 串行实时时钟芯片DS1302程序设计中的问题与对策(676)2.5 数字传感器及其应用(677)2.6 电阻式温度传感器的系列化设计及其应用(677)2.7 温度传感器及其与微处理器接口(677)2.8 AD7416数字温度传感器及其应用(677)2.9 隔离放大器及其应用(677)2.10 高速A/D转换器动态参数(678)2.11 V/F变换在单片机系统中的应用(678)2.12 微处理器内嵌式模数转换器在精密仪器中的应用研究(678)2.13 电子秤非线性自动修正方法(678)2.14 光耦传输的非线性校正(678)2.15 高斯滤波器在实时系统中的快速实现(679)2.16 用在系统可编程模拟器件实现双二阶型滤波器(679)2.17 最小二乘法在高精度温度测量中的应用(679)2.18 提高实时频率测量范围和精度新方法(679)2.19 具有微控制器的智能仪表设计与应用(679)2.20 用C语言编程的数据采集系统(680)2.21 大动态范围浮点A/D数据采集器的设计(680)2.22 基于PCI高速数据采集系统(680)2.23 一种基于PC机的高速16位并行数据采集接口(680)2.24 数据采集系统中增强型并行接口(EPP)电路的设计(681)2.25 用增强型并行接口EPP协议扩展计算机的ISA接口(681)2.26 基于增强型并行接口EPP的便携式高速数据采集系统(681)2.27 增强型并行接口EPP协议及其在CAN监控节点中的应用(681)2.28 利用增强型并行接口协议传输图像文件(681)2.29 用并行接口进行数据采集(682)2.30 高信噪比的VFC/DPLL数据采集装置(682)2.31 高精度数字式转速测量系统的研究(682)2.32 用单片机测量相位差的新方法(682)2.33 交流采样在电力系统中应用(682)2.34 同步图形存储器IS42G32256的电源与应用(683)2.35 IBM?PC处理10MHz高速模拟信号的研究(683)2.36 MCS51系列单片机存储容量扩展方法(683)2.37 用单片机实现数字相位变换器的设计方法(683)2.38 一种新的可重配置的串口扩展方案(683)2.39 VB环境下对双端口RAM物理读写的实现(684)2.40 双CPU实现远程多键盘鼠标交互(684)2.41 两种电阻时间变换器设计与分析(684)2.42 液晶显示器的接口和编程技巧(684)2.43 一种简单的电机变频调速方案及其应用(684)2.44 基于单片机的火控系统符号产生器电路原理设计(685)2.45 A/D转换器性能的改善方法(685)2.46 快速小波变换算法与信噪分离(685)2.47 80C196MC/MD单片机多个中断程序的同步问题(685)三、操作系统及软件技术(686)3.1 嵌入式软件技术的现状与发展动向(686)3.2 什么是嵌入式实时操作系统(686)3.3 实时多任务系统中的一些基本概念(686)3.4 一个源码公开的实时内核(687)3.5 Windows CE的实时性分析(687)3.6 串口通信多线程实现的分析(687)3.7 基于中间件的开发研究(688)3.8 Windows 95下实时控制软件设计的研究(688)3.9 Windows NT 4.0下设备驱动程序的开发与应用(688)3.10 Windows 98 下硬件中断驱动程序的开发(688)3.11 Windows下实时数据采集的实现(688)3.12 Win 95 下虚拟设备驱动程序设计开发(689)3.13 Win 95 环境下测控软件中端口读写的快速实现(689)3.14 Linux系统中ARP的编程实现技术(689)3.15 Linux中System V进程通信机制及访问控制技术的改进(689)3.16 VC++6.0中动态创建MSComm控件的问题及对策(689)3.17 在Visual Basic下使用I/O接口程序(690)3.18 VB应用程序速度的优化技术(690)3.19 嵌入式实时操作系统在机车微机测控软件开发中的应用(690)3.20 结构化程序方法在汇编语言中的应用(690)3.21 AVR单片机编程特性的应用研究(690)3.22 一种有效的51系列单片机软件仿真器(691)3.23 PIC单片机软件模拟仿真时输入信号的激励方式(691)3.24 基于LabVIEW的分布式VXI仪器教学实验系统设计(691)四、网络、通信及数据传输(692)4.1 单片机网络的组成与控制(692)4.2 实现ARINC 429数字信息传输的方案设计(692)4.3 结合电力线载波和电话通信的报警网络系统(692)4.4 网络电子密码锁监控系统的设计与实现(692)4.5 IRIG?E标准FM?FM解调器的有关技术(693)4.6 基于TCP/IP的多媒体通信实现(693)4.7 基于TCP/IP的多线程通信及其在远程监控系统中的应用(693)4.8 基于Internet的远程测控技术(693)4.9 Windows 95串行通信的几种方式及编程(693)4.10 在Windows 95下PC机和单片机的串行通信(693)4.11 基于80C196KC微处理器的高速串行通信(694)4.12 使用PC机并行口与下位单片机通信的方法(694)4.13 双向并口通信的开发(694)4.14 DSP和计算机并口的高速数据通信(694)4.15 一种高可靠性的PC机与单片机间的串行通信方法(694)4.16 单片机与PC机串行通信的实现方法(695)4.17 89C51单片机I/O口模拟串行通信的实现方法(695)4.18 TMS320C50与PC机高速串行通信的实现(695)4.19 DSP和PC机的异步串行通信设计(695)4.20 基于MCS单片机与PC机串行通信电平转换(695)4.21 一种简单的光电隔离RS232电平转换接口设计(695)4.22 ISA总线工业控制机与单片机系统的数据交换(696)4.23 RS232/422/485综合接口(696)4.24 基于RS485接口的单片机串行通信(696)4.25 在VC++中利用ActiveX控件开发串行通信程序(696)4.26 上位机和多台下位机的485通信(696)4.27 计算机与CAN通信的一种方法(697)4.28 用VB语言实现对端口I/O的访问(697)4.29 异种单片机共享片外存储器及其与微机通信的方法(697)4.30 单片机与MODEM接口技术及其在智能仪器中的应用研究(697)4.31 采用MCS51单片机实现CPFSK调制(697)4.32 一种新型编码芯片及其驱动程序的设计方案(698)4.33 DTMF远程通信的软硬件实现技术(698)4.34 采用DTMF方式通信的电度表管理系统(698)4.35 基于TAPI的电话语音系统设计方法(698)4.36 语音芯片APR9600及其在电话遥控系统中的应用(699)4.37 串行红外收发模块及其控制器在红外抄表系统中的应用(699)4.38 HSP50214B PDC及其在软件无线电中的应用(699)4.39 变速率CDMA系统软件无线电多用户接收机(699)五、新器件及应用技术(700)5.1 全帧读出型面阵CCD光电传感器在图像采集中的应用(700)5.2 光电码盘四倍频分析(700)5.3 H8/300H系列单片机及其应用(700)5.4 PIC 16F877单片机的键盘和LED数码显示接口(700)5.5 PIC16F877单片机实现D/A转换的两种方法(701)5.6 P89C51RX2 的PCA原理及设计(701)5.7 ADμC812中串口及其应用(701)5.8 INTEL96系列单片机中若干问题的讨论(701)5.9 关于INTEL96系列单片机中HSO事件的设置(701)5.10 MAX3100与PIC16C5X系列单片机的接口设计(702)5.11 单片MODEM芯片在远程数据通信中的应用(702)5.12 MX919在无线高速MODEM中的应用(702)5.13 高速串行数据收发器CY7B923/933及应用(702)5.14 双口RAM与FIFO芯片在数据处理系统中应用的比较(702)5.15 MAX202E在串行通信中的应用(703)5.16 线性隔离放大器ISO122的原理及应用(703)5.17 AD606对数放大器的研究与应用(703)5.18 电流/电压转换芯片MAX472在永磁直流电动机虚拟测试系统中的应用… (703)5.19 高精度模数转换器AD676的原理及应用(703)5.20 DS2450 A/D转换器的特性与应用(704)5.21 80C196KC内部A/D转换器的使用(704)5.22 一种16~24位分辨率D/A转换器的设计(704)5.23 串行A/D转换器TLC2543与TMS320C25的接口及编程(704)5.24 A/D转换器ICL7135积分特性应用(704)5.25 高精度A/D转换器AD7711A及应用(705)5.26 多路A/D转换器AD7714及其与M68HC11单片机接口技术(705)5.27 用AD7755设计的低成本电能表(705)5.28 20位Σ?Δ立体声ADA电路TLC320AD75C的接口电路设计(705)5.29 24位A/D转换器ADS1210/1211及其应用(706)5.30 模数转换器AD7705及其接口电路(706)5.31 串行A/D转换器ADS7812与单片机的接口技术(706)5.32 串行A/D转换器TLC548/549及其应用(706)5.33 采样率可变16通道16位隔离A/D电路(706)5.34 TLC549在交流有效值测量中的应用(707)5.35 温度传感器DS18B20的特性及程序设计方法(707)5.36 DS1820及其高精度温度测量的实现(707)5.37 采用DS1820的电弧炉炉底温度监测系统(707)5.38 并行实时时钟芯片DS12887及其应用(707)5.39 利用实时时钟X1203开启单片机系统(708)5.40 时钟芯片DS1302及其在数据记录中的应用(708)5.41 串行显示驱动器PS7219及与单片机的接口技术(708)5.42 MAX7219在PLC中的应用(708)5.43 一种实用的LED光柱显示器驱动方法(708)5.44 基于电能测量芯片ADE7756的智能电度表设计(709)5.45 TSS721A在自动抄表系统中的应用(709)5.46 电流传感放大器MAX471/MAX472的原理及应用(709)5.47 8XC552模数转换过程及其自动调零机制(709)5.48 旋转变压器数字转换器AD2S83在伺服系统中的应用(709)5.49 具有串行接口的I/O扩展器EM83010及其应用(710)5.50 新型LED驱动器TEC9607及其应用(710)5.51 新型语音识别电路AP7003及其应用(710)六、总线技术(711)6.1 现场总线技术的发展及应用展望(711)6.2 CAN总线点对点通信应用研究(711)6.3 基于CAN总线的数据通信系统研究(711)6.4 基于CAN总线的分布式数据采集与控制系统(711)6.5 基于CAN总线的分布式铝电解智能系统(711)6.6 CAN总线在通信电源监控系统中的应用(712)6.7 CAN总线在弧焊机器人控制系统中的应用(712)6.8 CAN总线及其在喷浆机器人中的应用(712)6.9 基于CAN控制器的单片机农业温室控制系统的设计(712)6.10 现场总线国际标准与LonWorks在智能电器中的应用(712)6.11 基于LON总线技术的暖通空调控制系统(712)6.12 通用串行总线(USB)及其芯片的使用(713)6.13 USB在数据采集系统中的应用(713)6.14 用MC68HC05JB4开发USB外设(713)6.15 8x930Ax/Hx USB控制器芯片及其在数字音频中的应用(713)6.16 基于MC68HC(9)08JB8芯片的USB产品——键盘设计(713)6.17 I2 C总线在LonWorks网络节点上的应用(714)6.18 Neuron3150的并行I/O接口对象及其应用(714)6.19 新型串行E2PROM 24LC65在LonWorks节点中的应用(714)6.20 利用I2C总线实现DSP对CMOS图像传感器的控制(714)6.21 在I2C总线系统中扩展LCD显示器(714)6.22 基于Windows环境的GPIB接口设计实现(714)6.23 微机PCI总线接口的研究与设计(715)6.24 通用串行总线(USB)原理及接口设计(715)6.25 CAN总线与1553B总线性能分析比较(715)6.26 利用USB接口实现双机互联通信(715)6.27 一种带USB接口的便携式语音采集卡的设计(715)七、可靠性技术(716)7.1 电磁干扰与电磁兼容设计(716)7.2 计算机的防电磁泄漏技术(716)7.3 低辐射计算机系统的设计实现(716)7.4 静电测量及其程序设计(716)7.5 电子产品生产中的静电防护技术(716)7.6 电子测控系统中的屏蔽与接地技术(717)7.7 微机控制系统的抗干扰技术(717)7.8 如何提高单片机应用产品的抗干扰能力(717)7.9 工业控制计算机系统中的常见干扰及处理措施(717)7.10 GPS用于军用导航中的抗干扰和干扰对抗研究(717)7.11 基于开放式体系结构的数控机床可靠性及抗干扰设计(717)7.12 变频器应用技术中的抗干扰问题(718)7.13 单片机的软件可靠性编程(718)7.14 单片微机的软件抑噪方案(718)7.15 SmartLock并口单片机软件狗加密技术(718)7.16 单片机系统中复位电路可靠性设计(718)7.17 测控系统中实现数据安全存储的实用技术(718)7.18 高精度仪表信号隔离电路设计(719)7.19 基于AT89C2051单片机的防误操作智能锁(719)7.20 Email的安全问题与保护措施(719)7.21 双机容错系统的一种实现途径(719)7.22 单片机应用系统抗干扰设计综述(719)7.23 微机控制系统中的干扰及其抑制方法(720)7.24 智能仪表的抗干扰和故障诊断(720)八、应用实践(721)8.1 AT89C51在银行利率显示屏中的应用(721)8.2 基于8xC196MC实现的磁链轨迹跟踪控制(721)8.3 基于80C196KC的开关磁阻电机测试系统(721)8.4 80C196KB单片机在绕线式异步电动机启动控制中的应用(721)8.5 GPS时钟系统(721)8.6 一种由AT89C2051单片微机实现的功率因数补偿装置(722)8.7 数据采集系统芯片ADμC812及其在温度监测系统中的应用(722)8.8 用AVR单片机实现蓄电池剩余电量的测量(722)8.9 基于SA9604的多功能电度表(722)8.10 数字正交上变频器AD9856的原理及其应用(722)8.11 基于MC628的可变参数PID控制方法的实现(723)8.12 Windows 98下远程数据采集系统设计(723)8.13 一种新式微流量计的研究(723)8.14 一种便携式多通道精密测温仪(723)8.15 一种高精度定时器的设计及其应用(723)8.16 智能湿度仪设计(724)8.17 固态数字语音记录仪的设计与实现(724)8.18 多功能语音电话答录器的设计(724)8.19 白炽灯色温测量装置电路设计(724)8.20 交直流供电无缝连接电源控制系统设计(724)8.21 小型电磁辐射敏感度自动测试系统的设计(725)8.22 生物电极微电流动态检测装置(725)8.23 二种铂电阻4~20 mA电流变送器电路(725)8.24 基于单片机的智能型光电编码器计数器(725)8.25 嵌入式系统中利用RS232C串口扩展矩阵式键盘(725)8.26 电压矢量控制PWM波的一种实时生成方法(725)8.27 便携式电能表校验装置现场使用分析(726)8.28 用单片机实现大型电动机的在线监测(726)8.29 PLC在L型管弯曲机电控系统中的应用(726)8.30 用EPROM实现步进电机的控制(726)8.31 一种手持设备的智能卡实现技术(726)8.32 钞票颜色识别系统的设计(727)8.33 数字锁相环在位置检测中的应用(727)九、DSP及其应用技术(728)9.1 数字信号处理器DSPs的发展(728)9.2 用TMS320C6201实现多路ITU?T G.728语音编码标准(728)9.3 采用DSP内核技术进行语音压缩开发(728)9.4 TMS320C80与存储器接口分析(728)9.5 TMS320C32浮点DSP存储器接口设计(728)9.6 TMS320VC5402 DSP的并行I/O引导装载方法研究(729)9.7 TMS320C30系统与PC104进行双向并行通信的方法(729)9.8 基于TMS320C6201的G.723.1多通道语音编解码的实现(729)9.9 基于TMS320C6201的多通道信号处理平台(729)9.10 基于两片TMS320C40的高速数据采集系统(729)9.11 使用TMS320C542构成数据采集处理系统(730)9.12 基于TMS320C32的视觉图像处理系统(730)9.13 用ADSP?2181和MC68302实现MPEG?2传送复用器(730)9.14 基于DSP的PC加密卡(730)9.15 TMS320C2XX及其在宽带恒定束宽波束形成器中的应用(730)9.16 DS80C320单片机在无人机测控数据采编器中的应用(731)9.17 基于TMS320F206 DSP的图像采集卡设计(731)9.18 基于定点DSP的实时语音命令识别模块(731)9.19 基于TMS320C50的语音频谱分析仪(731)9.20 利用DSP实现的专用数字录音机(731)9.21 基于DSP的全数字交流传动系统硬件平台设计(732)9.22 ADSP2106x中DMA的应用(732)9.23 软件无线电中DSP应用模式的分析(732)9.24 快速小波变换在DSP中的实现方法(732)十、PLD及EDA技术应用(733)10.1 可编程器件实现片上系统(733)10.2 VHDL语言在现代数字系统中的应用(733)10.3 用VHDL设计有限状态机的方法(733)10.4 ISP-PLD在数字系统设计中的应用(733)10.5 基于FPGA技术的新型高速图像采集(734)10.6 Protel 99SE电路仿真(734)10.7 可编程逻辑器件(PLD)在电路设计中的应用(734)10.8 基于FPGA的全数字锁相环路的设计(734)10.9 基于EPLD器件的一对多打印机控制器的研制(734)10.10 一种VHDL设计实现的有线电视机顶盒信源发生方案(735)10.11 一种并行存储器系统的FPGA实现(735)10.12 SDRAM接口的VHDL设计(735)10.13 采用ISP器件设计可变格式和可变速率的通信数字信号源(735)10.14 利用FPGA技术实现数字通信中的交织器和解交织器(735)10.15 XC9500系列CPLD遥控编程的实现(736)10.16 PLD器件在红外遥控解码中的应用(736)10.17 利用XCS40实现小型声纳的片上系统集成(736)10.18 可编程逻辑器件的VHDL设计技术及其在航空火控电子设备中的应用… (736)10.19 DSP+FPGA实时信号处理系统(736)10.20 CPLD在IGBT驱动设计中的应用(737)10.21 基于FPGA的FIR滤波器的实现(737)10.22 用可编程逻辑器件取代BCD?二进制转换器的设计方法(737)
上传时间: 2014-04-14
上传用户:gtf1207
关于3g无线网优的:WCDMA无线基本原理 课程目标: 掌握3G移动通信的基本概念 掌握3G的标准化过程 掌握WCDMA的基本网络结构以及各网元功能 掌握无线通信原理 掌握WCDMA的关键技术 参考资料: 《3G概述与概况》 《中兴通讯WCDMA基本原理》 《ZXWR RNC(V3.0)技术手册》 《ZXWR NB09技术手册》 第1章 概述 1 1.1 移动通信的发展历程 1 1.1.1 移动通信系统的发展 1 1.1.2 移动通信用户及业务的发展 1 1.2 3G移动通信的概念 2 1.3 为什么要发展第三代移动通信 2 1.4 3G的标准化过程 3 1.4.1 标准组织 3 1.4.2 3G技术标准化 3 1.4.3 第三代的核心网络 4 1.4.4 IMT-2000的频谱分配 6 1.4.5 2G向3G移动通信系统演进 7 1.4.6 WCDMA核心网络结构的演进 11 第2章 WCDMA系统介绍 13 2.1 系统概述 13 2.2 R99网元和接口概述 14 2.2.1 移动交换中心MSC 16 2.2.2 拜访位置寄存器VLR 16 2.2.3 网关GMSC 16 2.2.4 GPRS业务支持节点SGSN 16 2.2.5 网关GPRS支持节点GGSN 17 2.2.6 归属位置寄存器与鉴权中心HLR/AuC 17 2.2.7 移动设备识别寄存器EIR 17 2.3 R4网络结构概述 17 2.3.1 媒体网关MGW 19 2.3.2 传输信令网关T-SGW、漫游信令网关R-SGW 20 2.4 R5网络结构概述 20 2.4.1 媒体网关控制器MGCF 22 2.4.2 呼叫控制网关CSCF 22 2.4.3 会议电话桥分MRF 22 2.4.4 归属用户服务器HSS 22 2.5 UTRAN的一般结构 22 2.5.1 RNC子系统 23 2.5.2 Node B子系统 25 第3章 扩频通信原理 27 3.1 扩频通信简介 27 3.1.1 扩频技术简介 27 3.1.2 扩频技术的现状 27 3.2 扩频通信原理 28 3.2.1 扩频通信的定义 29 3.2.2 扩频通信的理论基础 29 3.2.3 扩频与解扩频过程 30 3.2.4 扩频增益和抗干扰容限 31 3.2.5 扩频通信的主要特点 32 第4章 无线通信基础 35 4.1 移动无线信道的特点 35 4.1.1 概述 35 4.1.2 电磁传播的分析 37 4.2 编码与交织 38 4.2.1 信道编码 39 4.2.2 交织技术 42 4.3 扩频码与扰码 44 4.4 调制 47 第5章 WCDMA关键技术 49 5.1 WCDMA系统的技术特点 49 5.2 功率控制 51 5.2.1 开环功率控制 51 5.2.2 闭环功率控制 52 5.2.3 HSDPA相关的功率控制 55 5.3 RAKE接收 57 5.4 多用户检测 60 5.5 智能天线 62 5.6 分集技术 64 第6章 WCDMA无线资源管理 67 6.1 切换 67 6.1.1 切换概述 67 6.1.2 切换算法 73 6.1.3 基于负荷控制原因触发的切换 73 6.1.4 基于覆盖原因触发的切换 74 6.1.5 基于负荷均衡原因触发的切换 77 6.1.6 基于移动台移动速度的切换 79 6.2 码资源管理 80 6.2.1 上行扰码 80 6.2.2 上行信道化码 83 6.2.3 下行扰码 84 6.2.4 下行信道化码 85 6.3 接纳控制 89 6.4 负荷控制 95 第7章 信道 97 7.1 UTRAN的信道 97 7.1.1 逻辑信道 98 7.1.2 传输信道 99 7.1.3 物理信道 101 7.1.4 信道映射 110 7.2 初始接入过程 111 7.2.1 小区搜索过程 111 7.2.2 初始接入过程 112
上传时间: 2013-11-21
上传用户:tdyoung
TKS仿真器B系列快速入门
上传时间: 2013-10-31
上传用户:aix008
电子元器件 任何一个电子电路,都是由电子元器件组合而成。了解常用元器件的性能、型号规格、组成分类及识别方法,用简单测试的方法判断元器件的好坏,是选择、使用电子元器件的基础,是组装、调试电子电路必须具备的技术技能。下面我们首先分别介绍电阻器、电容器、电感器、继电器、晶体管、光电器件、集成电路等元器件的基本知识1 .电阻器电阻器在电路中起限流、分流、降压、分压、负载、匹配等作用。1.1电阻器的分类电阻器按其结构可分为三类,即固定电阻器、可变电阻器(电位器)和敏感电阻器。按组成材料的不同,又可分为炭膜电阻器、金属膜电阻器、线绕电阻器、热敏电阻器、压敏电阻器等。常用电阻器的外形图如图1.1 1.2 电阻器的参数及标注方法电阻器的参数很多,通常考虑的有标称阻值、额定功率和允许偏差等。(1)、标称阻值和允许误差 电阻器的标称阻值是指电阻器上标出的名义阻值。而实际阻值与标称阻值之间允许的最大偏差范围叫做阻值允许偏差,一般用标称阻值与实际阻值之差除以标称阻值所得的百分数表示,又称阻值误差。普通电阻器阻值误差分三个等级:允许误差小于±5﹪的称Ⅰ级,允许误差小于±10﹪的称Ⅱ级,允许误差小于±20﹪的称Ⅲ级。表示电阻器的阻值和误差的方法有两种:一是直标法,二是色标法。直标法是将电阻的阻值直接用数字标注在电阻上;色标法是用不同颜色的色环来表示电阻器的阻值和误差,其规定如表1.1(a)和(b)。 用色标法表示电阻时,根据阻值的精密情况又分为两种:一是普通型电阻,电阻体上有四条色环,前两条表示数字,第三条表示倍乘,第四条表示误差。二是精密型电阻,电阻体上有五条色环,前三条表示数字,第四条表示倍乘,第五条表示误差。通用电阻器的标称阻值系列如表1.2所示,任何电阻器的标称阻值都应为表1.2所列数值乘以10nΩ,其中n为整数。(2)、电阻器的额定功率 电阻器的额定功率指电阻器在直流或交流电路中,长期连续工作所允许消耗的最大功率。常用的额定功率有1/8W、1/4W、1/2W、1W、2W、5W、10W、25W等。电阻器的额定功率有两种表示方法,一是2W以上的电阻,直接用阿拉伯数字标注在电阻体上,二是2W以下的炭膜或金属膜电阻,可以根据其几何尺寸判断其额定功率的大小如表1.3。3 电阻器的简单测试 电阻器的好坏可以用仪表测试,电阻器阻值的大小也可以用有关仪器、仪表测出,测试电阻值通常有两种方法,一是直接测试法,另一种是间接测试法。(1).直接测试法就是直接用欧姆表、电桥等仪器仪表测出电阻器阻值的方法。通常测试小于1Ω的小电阻时可用单臂电桥,测试1Ω到1MΩ电阻时可用电桥或欧姆表(或万用表),而测试1MΩ以上大电阻时应使用兆欧表。
上传时间: 2013-10-26
上传用户:windwolf2000
检测系统的基本特性 2.1 检测系统的静态特性及指标2.1.1检测系统的静态特性 一、静态测量和静态特性静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 例如:理想的线性检测系统: 如图2-1-1(a)所示带有零位值的线性检测系统: 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标一、 测量范围和量程1、 测量范围:(xmin,xmax)xmin――检测系统所能测量到的最小被测输入量(下限)xmax――检测系统所能测量到的最大被测输入量(上限)。2、量程: 二、灵敏度S 串接系统的总灵敏度为各组成环节灵敏度的连乘积 三、 分辨力与分辨率1、分辨力:能引起输出量发生变化时输入量的最小变化量 。2、分辨率:全量程中最大的 即 与满量程L之比的百分数。四、精度(见第三章)
上传时间: 2013-11-15
上传用户:yy_cn
一个简单好用的B+树算法实现
上传时间: 2015-01-04
上传用户:缥缈
一个用Basic实现的B-Tree算法
上传时间: 2013-12-30
上传用户:ccclll